Esmaeili Vida, Mohassel Feghhi Mahmood, Seyedarabi Hadi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 51666, Iran.
Sci Rep. 2025 Jul 1;15(1):22404. doi: 10.1038/s41598-025-05675-w.
Melanoma is among the deadliest forms of malignant skin cancer, with the number of cases increasing dramatically worldwide. Its early and accurate diagnosis is crucial for effective treatment. However, automatic melanoma detection has several significant challenges. These challenges include the lack of a balanced dataset, high variability within melanoma lesions, differences in the locations of skin lesions in images, the similarity between different skin lesions, and the presence of various artifacts. In addition, the previous deep-learning techniques for diagnosing melanoma cannot recognize the unique relations between samples. For this reason, these convolutional neural networks (CNNs) cannot perceive the changed or rotated image samples as similar. To address these issues in this paper, we have done pre-processing such as hair removal, balancing the skin lesion images using a generative adversarial network (GAN)-based method, denoising using a CNN-based method, and image enhancement. In addition, we propose four new methods to extract key features: the hybrid ULBP and Chan-Vese algorithm (ULBP-CVA), multi-block ULBP on the nine suggested planes (multi-block ULBP-NP), a combination of multi-block Gabor magnitude and phase with ULBP-NP (multi-block GULBP-NP), and combining multi-block gradient magnitude and orientation with ULBP-NP (multi-block gradient ULBP-NP). We suggest nine planes to grab the most vital information about skin lesions in any direction for accurate coding. These introduced planes can capture synchronous spatial and local variations. Hence, very similar lesions can be differentiated by revealing small changes in these small planes. Finally, we propose an optimized four-stream CNN (OFSCNN) for classification. It can simultaneously classify the lesion color, lesion edges, texture features, local-spatial frequency features, and multi-oriented gradient features. The simulation results of our proposed method are promising compared to the most relevant state-of-the-art methods for melanoma detection in dermoscopy images. Our proposed method has automatically detected melanoma in 99.8%, 99.9%, 99.62%, and 99.6% of the HAM 10000, ISIC 2024, ISIC 2017, and ISIC 2016 datasets, respectively.
黑色素瘤是最致命的恶性皮肤癌形式之一,全球病例数急剧增加。其早期准确诊断对有效治疗至关重要。然而,黑色素瘤的自动检测存在几个重大挑战。这些挑战包括缺乏平衡的数据集、黑色素瘤病变内部的高度变异性、图像中皮肤病变位置的差异、不同皮肤病变之间的相似性以及各种伪影的存在。此外,先前用于诊断黑色素瘤的深度学习技术无法识别样本之间的独特关系。因此,这些卷积神经网络(CNN)无法将变化或旋转的图像样本视为相似。为了解决本文中的这些问题,我们进行了预处理,如毛发去除、使用基于生成对抗网络(GAN)的方法平衡皮肤病变图像、使用基于CNN的方法去噪以及图像增强。此外,我们提出了四种提取关键特征的新方法:混合局部二值模式(ULBP)与Chan-Vese算法(ULBP-CVA)、九个建议平面上的多块ULBP(多块ULBP-NP)、多块Gabor幅度和相位与ULBP-NP的组合(多块GULBP-NP)以及多块梯度幅度和方向与ULBP-NP的组合(多块梯度ULBP-NP)。我们建议九个平面以在任何方向获取有关皮肤病变的最重要信息以进行准确编码。这些引入的平面可以捕获同步的空间和局部变化。因此,通过揭示这些小平面中的微小变化可以区分非常相似的病变。最后,我们提出了一种用于分类的优化四流CNN(OFSCNN)。它可以同时对病变颜色、病变边缘、纹理特征、局部空间频率特征和多方向梯度特征进行分类。与用于皮肤镜图像中黑色素瘤检测的最相关的最先进方法相比,我们提出的方法的模拟结果很有前景。我们提出的方法在HAM 10000、ISIC 2024、ISIC 2017和ISIC 2016数据集中分别自动检测出黑色素瘤的比例为99.8%、99.9%、99.62%和99.6%。