Suppr超能文献

使用6735张脑部磁共振成像图像,通过深度学习对阿尔茨海默病进行分类和诊断。

Classifying and diagnosing Alzheimer's disease with deep learning using 6735 brain MRI images.

作者信息

Mousavi Seyed Mohammad, Moulaei Khadijeh, Ahmadian Leila

机构信息

Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.

Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.

出版信息

Sci Rep. 2025 Jul 2;15(1):22721. doi: 10.1038/s41598-025-08092-1.

Abstract

Traditional diagnostic methods for Alzheimer's disease often suffer from low accuracy and lengthy processing times, delaying crucial interventions and patient care. Deep convolutional neural networks trained on MRI data can enhance diagnostic precision. This study aims to utilize deep convolutional neural networks (CNNs) trained on MRI data for Alzheimer's disease diagnosis and classification. In this study, the Alzheimer MRI Preprocessed Dataset was used, which includes 6735 brain structural MRI scan images. After data preprocessing and normalization, four models Xception, VGG19, VGG16 and InceptionResNetV2 were utilized. Generalization and hyperparameter tuning were applied to improve training. Early stopping and dynamic learning rate were used to prevent overfitting. Model performance was evaluated based on accuracy, F-score, recall, and precision. The InceptionResnetV2 model showed superior performance in predicting Alzheimer's patients with an accuracy, F-score, recall, and precision of 0.99. Then, the Xception model excelled in precision, recall, and F-score, with values of 0.97 and an accuracy of 96.89. Notably, InceptionResnetV2 and VGG19 demonstrated faster learning, reaching convergence sooner and requiring fewer training iterations than other models. The InceptionResNetV2 model achieved the highest performance, with precision, recall, and F-score of 100% for both mild and moderate dementia classes. The Xception model also performed well, attaining 100% for the moderate dementia class and 99-100% for the mild dementia class. Additionally, the VGG16 and VGG19 models showed strong results, with VGG16 reaching 100% precision, recall, and F-score for the moderate dementia class. Deep convolutional neural networks enhance Alzheimer's diagnosis, surpassing traditional methods with improved precision and efficiency. Models like InceptionResnetV2 show outstanding performance, potentially speeding up patient interventions.

摘要

阿尔茨海默病的传统诊断方法往往准确率低且处理时间长,从而延误了关键干预措施和患者护理。基于磁共振成像(MRI)数据训练的深度卷积神经网络可以提高诊断精度。本研究旨在利用基于MRI数据训练的深度卷积神经网络(CNN)进行阿尔茨海默病的诊断和分类。在本研究中,使用了阿尔茨海默病MRI预处理数据集,其中包括6735张脑结构MRI扫描图像。经过数据预处理和归一化后,使用了四种模型:Xception、VGG19、VGG16和InceptionResNetV2。应用泛化和超参数调整来改进训练。使用早期停止和动态学习率来防止过拟合。基于准确率、F值、召回率和精确率评估模型性能。InceptionResnetV2模型在预测阿尔茨海默病患者方面表现出卓越性能,其准确率、F值、召回率和精确率均为0.99。然后,Xception模型在精确率、召回率和F值方面表现出色,分别为0.97和准确率96.89。值得注意的是,InceptionResnetV2和VGG19表现出更快的学习速度,比其他模型更快达到收敛,所需的训练迭代次数更少。InceptionResNetV2模型实现了最高性能,轻度和中度痴呆类别的精确率、召回率和F值均达到100%。Xception模型也表现良好,中度痴呆类别的精确率、召回率和F值达到100%,轻度痴呆类别的精确率、召回率和F值达到99 - 100%。此外,VGG16和VGG19模型也取得了不错的结果,VGG16在中度痴呆类别的精确率、召回率和F值达到100%。深度卷积神经网络增强了阿尔茨海默病的诊断,以更高的精度和效率超越了传统方法。像InceptionResnetV2这样的模型表现出卓越性能,可能会加快患者干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验