Suppr超能文献

犬面部标志点检测及其在面部分析中的应用。

Dog facial landmarks detection and its applications for facial analysis.

作者信息

Martvel George, Zamansky Anna, Pedretti Giulia, Canori Chiara, Shimshoni Ilan, Bremhorst Annika

机构信息

University of Haifa, Haifa, Israel.

University of Parma, Parma, Italy.

出版信息

Sci Rep. 2025 Jul 1;15(1):21886. doi: 10.1038/s41598-025-07040-3.

Abstract

Automated analysis of facial expressions is a crucial challenge in the emerging field of animal affective computing. One of the most promising approaches in this context is facial landmarks, which are well-studied for humans and are now being adopted for many non-human species. The scarcity of high-quality, comprehensive datasets is a significant challenge in the field. This paper is the first to present a novel Dog Facial Landmarks in the Wild (DogFLW) dataset containing 3732 images of dogs annotated with facial landmarks and bounding boxes. Our facial landmark scheme has 46 landmarks grounded in canine facial anatomy, the Dog Facial Action Coding System (DogFACS), and informed by existing cross-species landmarking methods. We additionally provide a benchmark for dog facial landmarks detection and demonstrate two case studies for landmark detection models trained on the DogFLW. The first is a pipeline using landmarks for emotion classification from dog facial expressions from video, and the second is the recognition of DogFACS facial action units (variables), which can enhance the DogFACS coding process by reducing the time needed for manual annotation. The DogFLW dataset aims to advance the field of animal affective computing by facilitating the development of more accurate, interpretable, and scalable tools for analysing facial expressions in dogs with broader potential applications in behavioural science, veterinary practice, and animal-human interaction research.

摘要

面部表情的自动分析是新兴的动物情感计算领域中的一项关键挑战。在这一背景下,最有前景的方法之一是面部标志点,它在人类研究中已得到充分研究,现在也被应用于许多非人类物种。高质量、全面的数据集的匮乏是该领域的一项重大挑战。本文首次提出了一个新颖的野外犬类面部标志点(DogFLW)数据集,其中包含3732张带有面部标志点和边界框注释的犬类图像。我们的面部标志点方案有46个基于犬类面部解剖结构、犬类面部动作编码系统(DogFACS)并参考现有跨物种标志点方法的标志点。我们还提供了一个犬类面部标志点检测的基准,并展示了两个在DogFLW上训练的标志点检测模型的案例研究。第一个是使用标志点从视频中的犬类面部表情进行情感分类的管道,第二个是识别DogFACS面部动作单元(变量),它可以通过减少手动注释所需的时间来增强DogFACS编码过程。DogFLW数据集旨在通过促进开发更准确、可解释和可扩展的工具来分析犬类的面部表情,从而推动动物情感计算领域的发展,这些工具在行为科学、兽医实践和动物与人类互动研究中具有更广泛的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验