Suppr超能文献

一种用于使用全玻片细胞学图像进行稳健宫颈癌亚型分类的混合复合缩放超图神经网络。

A hybrid compound scaling hypergraph neural network for robust cervical cancer subtype classification using whole slide cytology images.

作者信息

Govindaraj Pooja, Natarajan Sasikaladevi, Sampath Pradeepa, Suresh Akilesh Thimma, Amirtharajan Rengarajan

机构信息

Department of Computer Science and Engineering, School of Computing, Shanmugha Arts Science Technology and Research Academy, Thanjavur, Tamil Nadu, 613401, India.

Department of Information Technology, School of Computing, Shanmugha Arts Science Technology and Research Academy, Thanjavur, Tamil Nadu, 613401, India.

出版信息

Sci Rep. 2025 Jul 1;15(1):22201. doi: 10.1038/s41598-025-05891-4.

Abstract

Cervical cancer is a major cause of mortality among women, particularly in low-income countries with insufficient screening programs. Manual cytological examination is time-consuming, error-prone and subject to inter-observer variability. Automated and robust classification of the whole slide cytology images for cervical cancer is essential for detecting precancerous and malignant lesions. We propose a novel deep learning framework, the Compound Scaling Hypergraph Neural Network model (CSHG-CervixNet), for robust classification of cervical cancer subtypes. The model integrates a Compound Scaling Convolutional Neural Network (CSCNN) with a k-dimensional Hypergraph Neural Network (kd-HGNN) architecture. CSCNN balances the network's depth, width, and resolution, supporting effective feature representation with minimal computational overhead. kd-HGNN captures higher-order relationships between the features, and its propagation mechanism ensures better feature diffusion across distant nodes. The model is evaluated on the benchmark Sipakmed dataset and achieves an accuracy of 99.31%, with a macro-averaged precision of 98.97%, recall of 99.38%, and F1-score of 99.34%, demonstrating its robustness in cervical cancer subtype classification. Pathologists and other medical experts will find this study helpful in distinguishing cervical cancer subtypes so that targeted treatment may be provided and effective disease management is made possible.

摘要

宫颈癌是女性死亡的主要原因,在筛查项目不足的低收入国家尤其如此。手工细胞学检查耗时、容易出错且存在观察者间差异。对宫颈癌的全玻片细胞学图像进行自动化且可靠的分类对于检测癌前病变和恶性病变至关重要。我们提出了一种新颖的深度学习框架,即复合缩放超图神经网络模型(CSHG-CervixNet),用于对宫颈癌亚型进行可靠分类。该模型将复合缩放卷积神经网络(CSCNN)与k维超图神经网络(kd-HGNN)架构相结合。CSCNN平衡了网络的深度、宽度和分辨率,以最小的计算开销支持有效的特征表示。kd-HGNN捕捉特征之间的高阶关系,其传播机制确保更好地在远距离节点之间进行特征扩散。该模型在基准Sipakmed数据集上进行评估,准确率达到99.31%,宏平均精度为98.97%,召回率为99.38%,F1分数为99.34%,证明了其在宫颈癌亚型分类中的稳健性。病理学家和其他医学专家将发现这项研究有助于区分宫颈癌亚型,从而能够提供针对性治疗并实现有效的疾病管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验