Suppr超能文献

对比增强CT中内外圈面积比在鉴别小(<3 cm)乏脂性血管平滑肌脂肪瘤与肾细胞癌中的应用价值

Usefulness of the internal-to-external circle area ratio in contrast-enhanced CT to differentiate small (< 3 cm) fat-poor angiomyolipoma from renal cell carcinoma.

作者信息

Song Xinhong, Zhang Wenjie, Li Xinyan, Sun Dandan, Zhang Qianqian, Ma Heng, Qu Jianyi, Wang Xiaofei

机构信息

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China.

Department of Pathology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):236. doi: 10.1186/s12880-025-01758-2.

Abstract

BACKGROUND

This study aimed to assess the use of morphological parameters, including the internal-to-external circle area ratio (IECR), in contrast-enhanced CT to distinguish small (< 3 cm) fat-poor angiomyolipoma (AML) from renal cell carcinoma (RCC).

METHODS

A total of 212 tumors (35 fat-poor AMLs and 177 RCCs) in the initial cohort were retrospectively evaluated using contrast-enhanced CT. Morphological characteristics (angular interface sign [AIS] score, overflowing beer sign [OBS] score, tumor diameter, circularity index, and IECR) were compared between RCC and fat-poor AML. The diagnostic performance of the significant parameters was evaluated via the area under the receiver operating characteristic curve (AUC) and compared via the DeLong test. Logistic regression was used to determine the main factors for distinguishing fat-poor AML from RCC. Three prediction models were constructed and evaluated: one omitting circularity index and IECR, one incorporating circularity index, and one incorporating IECR. The effectiveness of the prediction models was then confirmed through a validation cohort (19 fat-poor AMLs and 99 RCCs).

RESULTS

There were significant differences between RCC and fat-poor AML in both sex (P < 0.001) and all morphological parameters, including AIS score (P = 0.003), OBS score (P < 0.001), any sign for AML (P < 0.001), tumor diameter (P = 0.008), circularity index (P < 0.001), and IECR (P < 0.001), with AUC values ranging from 0.619 to 0.899. The diagnostic performance of IECR (AUC, 0.899) was significantly better than that of other parameters (Z range, 2.128-8.582; all P < 0.05). To distinguish fat-poor AML from RCC, the AUC values of the prediction model omitting circularity index and IECR, prediction model incorporating circularity index, and prediction model incorporating IECR were 0.873, 0.921, and 0.951 in the initial cohort, as well as 0.867, 0.891, and 0.933 in the validation cohort, respectively. The prediction model that used the IECR outperformed the models without the IECR.

CONCLUSIONS

The IECR can be used as a simple and practical quantitative morphological factor to distinguish fat-poor AML from RCC. Adding IECR can increase the diagnostic performance of prediction models on the basis of morphological characteristics in the differential diagnosis of fat-poor AML and RCC.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

本研究旨在评估在增强CT中使用包括内外圈面积比(IECR)在内的形态学参数,以区分小(<3 cm)的乏脂性血管平滑肌脂肪瘤(AML)与肾细胞癌(RCC)。

方法

对初始队列中的212个肿瘤(35个乏脂性AML和177个RCC)进行回顾性增强CT评估。比较RCC和乏脂性AML之间的形态学特征(角界面征[AIS]评分、溢出啤酒征[OBS]评分、肿瘤直径、圆形度指数和IECR)。通过受试者操作特征曲线下面积(AUC)评估显著参数的诊断性能,并通过德龙检验进行比较。采用逻辑回归确定区分乏脂性AML与RCC的主要因素。构建并评估了三个预测模型:一个省略圆形度指数和IECR,一个纳入圆形度指数,一个纳入IECR。然后通过验证队列(19个乏脂性AML和99个RCC)确认预测模型的有效性。

结果

RCC和乏脂性AML在性别(P<0.001)以及所有形态学参数上均存在显著差异,包括AIS评分(P = 0.003)、OBS评分(P<0.001)、AML的任何征象(P<0.001)、肿瘤直径(P = 0.008)、圆形度指数(P<0.001)和IECR(P<0.001),AUC值范围为0.619至0.899。IECR的诊断性能(AUC,0.899)显著优于其他参数(Z范围,2.128 - 8.582;所有P<0.05)。为区分乏脂性AML与RCC,在初始队列中,省略圆形度指数和IECR的预测模型、纳入圆形度指数的预测模型以及纳入IECR的预测模型的AUC值分别为0.873、0.921和0.951,在验证队列中分别为0.867、0.891和0.933。使用IECR的预测模型优于不使用IECR的模型。

结论

IECR可作为一种简单实用的定量形态学因素,用于区分乏脂性AML与RCC。在乏脂性AML和RCC的鉴别诊断中,添加IECR可提高基于形态学特征的预测模型的诊断性能。

临床试验编号

不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验