Suppr超能文献

临床和血清生物标志物在预测特发性炎性肌病间质性肺病的列线图中的整合。

Integration of clinical and serological biomarkers in a nomogram for predicting interstitial lung disease in idiopathic inflammatory myopathies.

作者信息

Wang Zhixia, Zhang Jingyun, Li Jin, Mao Xiaona, Li Yangyang, Wang Dekun, Ge Wenpeng, Li Jingzhan, Liang Changhua, Zhang Zhiqiang

机构信息

Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan, Henan, 453100, China.

Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan, Henan, 453100, China.

出版信息

BMC Rheumatol. 2025 Jul 1;9(1):73. doi: 10.1186/s41927-025-00534-7.

Abstract

BACKGROUND

Idiopathic inflammatory myopathies (IIM) are a diverse group of autoimmune diseases characterized primarily by muscle weakness and systemic involvement, which can include interstitial lung disease (ILD). ILD is a serious complication in IIM, significantly affecting patient prognosis and quality of life. Early identification of IIM patients at risk for developing ILD is crucial for timely intervention and personalized treatment, yet the factors contributing to this risk remain inadequately defined.

METHODS

This retrospective study analyzed medical records of 130 patients with IIM from the First Affiliated Hospital of Xinxiang Medical University, China, between August 2018 and July 2023. Patients were categorized into two groups: IIM with interstitial lung disease (IIM-ILD, n = 75) and IIM without ILD (n = 55). We collected and analyzed demographic, clinical, and laboratory data, including specific autoantibody tests. Multivariate logistic regression identified independent predictors of ILD, and a nomogram was developed to evaluate ILD risk based on significant factors.

RESULTS

This retrospective study analyzed 130 patients with IIM, including 75 with interstitial lung disease and 55 without ILD. The IIM-ILD group was significantly older (58.4 vs. 48.3, p = 0.052) and had higher frequencies of respiratory symptoms including dyspnea (61.3% vs. 14.9%, p < 0.001) and cough (54.7% vs. 10.9%, p < 0.001). Key laboratory differences included elevated ESR (26.5 vs. 10.0 mm/H, p < 0.001), CRP (3.44 vs. 1.64 mmol/L, p = 0.013), and IgG (12.5 vs. 10.9 g/L, p = 0.006), along with lower ALT (29.0 vs. 44.0 U/L, p = 0.001) and AST (32.0 vs. 45.0 U/L, p = 0.021) in the IIM-ILD group. Anti-Jo-1 antibodies were more prevalent in IIM-ILD patients (18.7% vs. 5.5%, p = 0.027). Multivariate analysis identified ESR (OR = 1.063, 95% CI:1.012-1.117, p = 0.015), AST (OR = 0.985, 95% CI:0.970-1.000, p = 0.047), and IgG (OR = 1.191, 95% CI:1.025-1.383, p = 0.022) as independent predictors. These factors, combined with dyspnea and anti-Jo-1 status, were incorporated into a predictive nomogram model. The nomogram demonstrated excellent discrimination (AUC = 0.891, 95% CI:0.836-0.947) with sensitivity of 79.7% and specificity of 82.6%. Calibration curves showed good agreement between predicted and observed outcomes (Hosmer-Lemeshow test, p = 0.779). Decision curve analysis confirmed the model's clinical utility across a wide range of threshold probabilities. This comprehensive model provides clinicians with a practical tool for early identification of IIM patients at high risk for ILD development.

CONCLUSION

Elevated ESR and CRP levels, in conjunction with lower AST levels, alongside the presence of anti-Jo-1 antibodies and the manifestation of dyspnea are significant biomarkers associated with the risk of developing IIM-ILD. This predictive model enhances early diagnostic capabilities and facilitates risk stratification, thereby informing clinical decision-making. However, further validation in larger, multicenter cohorts is warranted to corroborate the model's predictive accuracy and to optimize its clinical utility.

摘要

背景

特发性炎性肌病(IIM)是一组多样的自身免疫性疾病,主要特征为肌肉无力和全身受累,其中可包括间质性肺疾病(ILD)。ILD是IIM的一种严重并发症,显著影响患者预后和生活质量。早期识别有发生ILD风险的IIM患者对于及时干预和个性化治疗至关重要,但导致这种风险的因素仍未得到充分界定。

方法

这项回顾性研究分析了2018年8月至2023年7月期间中国新乡医学院第一附属医院130例IIM患者的病历。患者被分为两组:伴有间质性肺疾病的IIM(IIM-ILD,n = 75)和不伴有ILD的IIM(n = 55)。我们收集并分析了人口统计学、临床和实验室数据,包括特定自身抗体检测。多因素逻辑回归确定了ILD的独立预测因素,并基于显著因素开发了一个列线图以评估ILD风险。

结果

这项回顾性研究分析了130例IIM患者,其中75例患有间质性肺疾病,55例不伴有ILD。IIM-ILD组年龄显著更大(58.4岁对48.3岁,p = 0.052),呼吸症状发生率更高,包括呼吸困难(61.3%对14.9%,p < 0.001)和咳嗽(54.7%对10.9%,p < 0.001)。关键的实验室差异包括IIM-ILD组红细胞沉降率(ESR)升高(26.5对10.0 mm/H,p < 0.001)、C反应蛋白(CRP)升高(3.44对1.64 mmol/L,p = 0.013)和免疫球蛋白G(IgG)升高(12.5对10.9 g/L,p = 0.006),同时谷丙转氨酶(ALT)降低(29.0对44.0 U/L,p = 0.001)和谷草转氨酶(AST)降低(32.0对45.0 U/L,p = 0.021)。抗Jo-1抗体在IIM-ILD患者中更常见(18.7%对5.5%,p = 0.027)。多因素分析确定ESR(比值比[OR] = 1.063,95%置信区间[CI]:1.012 - 1.117,p = 0.015)、AST(OR = 0.985,95% CI:0.970 - 1.000,p = 0.047)和IgG(OR = 1.191,95% CI:1.025 - 1.383,p = 0.022)为独立预测因素。这些因素,结合呼吸困难和抗Jo-1状态,被纳入一个预测列线图模型。该列线图显示出良好的区分度(曲线下面积[AUC] = 0.891,95% CI:0.836 - 0.947),敏感性为79.7%,特异性为82.6%。校准曲线显示预测结果与观察结果之间具有良好的一致性(Hosmer-Lemeshow检验,p = 0.779)。决策曲线分析证实了该模型在广泛的阈值概率范围内的临床实用性。这个综合模型为临床医生提供了一个实用工具,用于早期识别有发生ILD高风险的IIM患者。

结论

ESR和CRP水平升高,以及AST水平降低,同时伴有抗Jo-1抗体的存在和呼吸困难的表现是与发生IIM-ILD风险相关的重要生物标志物。这个预测模型增强了早期诊断能力并有助于风险分层,从而为临床决策提供依据。然而,需要在更大规模的多中心队列中进行进一步验证,以证实该模型的预测准确性并优化其临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da2b/12219061/11334011c36a/41927_2025_534_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验