Jakob Lukas, van der Wal Jacob J, Tovtik Radek, Copko Jakub, Iagatti Alessandro, Donato Mariangela Di, Crespi Stefano, Simeth Nadja A
Department of Chemistry, Ångström laboratory, Uppsala University, Regementsvägen 10, Uppsala, 752 37, Sweden.
Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.
Chemistry. 2025 Aug 1;31(43):e202501856. doi: 10.1002/chem.202501856. Epub 2025 Jul 11.
Photoswitches have been impacting diverse areas of research, introducing means of dynamically regulating their environment through reversible photochemical isomerization. Among the different classes of photoswitches, phenylazopyrazoles (PAPs) stand out due to their facile synthesis, beneficial photochemical properties, and the long thermal stability of their metastable forms. Not surprisingly, they have been applied in different fields, from material sciences to pharmacology. However, once incorporated into complex systems, following the photoisomerization behavior of PAPs with routinely used analytical methods becomes challenging. In this work, we focused on synthesizing and studying the isomerization behavior of a series of differently substituted PAPs possessing two trifluoromethyl groups on the pyrazole moiety (F-PAPs). By studying their isomerization with steady-state and transient absorption spectroscopy, we found marked trends in the isomerization efficiency and photophysical properties of the different switches. Most importantly, these molecules can quantitatively isomerize between their stable and metastable forms, with relatively long lifetimes of thermal back relaxation. Leveraging these characteristics, we highlight in this work the potential application of F-PAPs as photoswitchable F-NMR probes to generate light-responsive vesicles.
光开关一直在影响着不同的研究领域,通过可逆光化学异构化引入了动态调节其环境的方法。在不同种类的光开关中,苯基偶氮吡唑(PAPs)因其易于合成、良好的光化学性质以及亚稳态形式的长热稳定性而脱颖而出。毫不奇怪,它们已被应用于从材料科学到药理学的不同领域。然而,一旦纳入复杂系统,用常规分析方法跟踪PAPs的光异构化行为就变得具有挑战性。在这项工作中,我们专注于合成和研究一系列在吡唑部分带有两个三氟甲基的不同取代的PAPs(F-PAPs)的异构化行为。通过用稳态和瞬态吸收光谱研究它们的异构化,我们发现了不同光开关在异构化效率和光物理性质方面的显著趋势。最重要的是,这些分子可以在其稳定和亚稳态形式之间定量异构化,热反向弛豫的寿命相对较长。利用这些特性,我们在这项工作中强调了F-PAPs作为可光开关的F-NMR探针以产生光响应囊泡的潜在应用。