Igarashi Yasuhiko, Nagamura Naoka, Sekine Masahiro, Fukidome Hirokazu, Hino Hideitsu, Okada Masato
Institute of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 3058573, Japan.
Photoemission Group, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki, 3050003, Japan.
Discov Nano. 2025 Jul 3;20(1):102. doi: 10.1186/s11671-025-04291-x.
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
在纳米结构提取过程中,同步辐射和电子显微镜等先进技术常常受到长时间曝光导致的辐射损伤和电荷伪影的阻碍。本研究提出了一种使用稀疏编码的多帧超分辨率方法,以增强同步辐射显微光谱图像。通过从多个低分辨率图像重建高分辨率图像,曝光时间得以最小化,减少了辐射效应、热漂移和样品降解,同时保留了空间分辨率。与基于深度学习的超分辨率方法不同,后者忽略了位置失准,我们的方法将位置偏移视为已知的控制参数,利用少量有噪声的数据集提高了超分辨率精度。此外,我们的稀疏编码方法学习了一个专为纳米结构提取量身定制的最优字典,即使在存在噪声和样本有限的情况下,也能根据数据的独特特征对超分辨率过程进行微调。将我们的方法应用于三维纳米级电子能谱化学分析(nano-ESCA)数据时,利用从三维nano-ESCA数据集中学习到的高分辨率字典,显著提高了图像质量,保留了结构细节。与需要大量数据集的现有深度学习技术不同,我们的方法在数据有限的情况下表现出色,非常适合样本量受限的实际场景。在将测量时间减少超过[公式:见原文]的同时,可以保持高分辨率质量,突出了我们方法的效率。结果强调了这种超分辨率技术不仅在推进同步辐射显微光谱方面的潜力,而且还能适用于其他高分辨率成像模式,如电子显微镜。这种方法提供了更高的图像质量、更短的曝光时间以及更好的科学数据可解释性,使其成为克服纳米级成像中与辐射损伤和样品降解相关挑战的通用工具。