McCabe Philippa Grace, Lisboa Paulo, Baltzopoulos Bill, Jarman Ian, Stamp Kellyann, Olier Ivan
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England, United Kingdom.
Data Science Research Centre, Liverpool John Moores University, Liverpool, England, United Kingdom.
PLoS One. 2025 Jul 3;20(7):e0325681. doi: 10.1371/journal.pone.0325681. eCollection 2025.
To compare diagnostic models for radiological KOA at KL2 + using sex-specific variables against a generic model with sex as an input. Data from the Osteoarthritis Initiative (OAI) was used for model development and optimisation.
Current models for diagnosis of knee osteoarthritis (KOA) at first presentation comprise subjects in the OAI dataset with and without KOA. We select subsets of the OAI data set for which additional sex-specific variables are available, resulting in male and female cohorts of size n = 1250 and n = 1442, respectively.
The classification performance of the previous diagnostic model on the test data has an area under the curve (AUC) of (95% CI 0.721-0.774) when only variables common to both sexes were entered for model selection and sex was a separate input. When tested separately on the male only and female cohort the test performance of the generic model gives baseline AUCs of (95% CI 0.689-0.770) and (95% CI 0.728-0.799) respectively. The sex-specific models for males and females yield AUCs of (95% CI 0.684-0.765) and (95% CI 0.731-0.803) respectively.
Fitting sex-specific models allows additional variables to be entered in the pool for model selection compared with a generic model with sex as a covariate. The focus of this study is whether the specificity of the additional data enhances their predictive power of logistic regression modelling for the diagnosis of incident radiological KOA in the OAI dataset, at first presentation. The performance of the generic and sex-specific models is comparable, since the confidence intervals for all of the models overlap. Nevertheless, some relevant variables after feature selection v are sex-specific, indicating that incidence of KOA at baseline presentation is associated with sex-specific attributes.
This specialisation of the sex-specific models indicates potential differences in the aetiology leading to disease onset and may provide greater utility to both clinicians and subjects. For instance, the risk factors identified by the specialised models provide quantitative indicators that useful for early identification of females at higher risk of KOA, prompting them to take proactive measures to improve joint health at an earlier stage in life.
比较使用性别特异性变量针对KL2+处放射性膝骨关节炎(KOA)的诊断模型与以性别作为输入的通用模型。骨关节炎倡议(OAI)的数据用于模型开发和优化。
初次就诊时膝关节骨关节炎(KOA)的当前诊断模型包括OAI数据集中有和没有KOA的受试者。我们选择了OAI数据集中可获得额外性别特异性变量的子集,分别得到了大小为n = 1250和n = 1442的男性和女性队列。
当仅将两性共有的变量输入模型选择且性别作为单独输入时,先前诊断模型在测试数据上的分类性能的曲线下面积(AUC)为(95%置信区间0.721 - 0.774)。当仅在男性队列和女性队列上分别进行测试时,通用模型的测试性能分别给出基线AUC为(95%置信区间0.689 - 0.770)和(95%置信区间0.728 - 0.799)。男性和女性的性别特异性模型的AUC分别为(95%置信区间0.684 - 0.765)和(95%置信区间0.731 - 0.803)。
与以性别作为协变量的通用模型相比,拟合性别特异性模型允许在模型选择的变量池中输入额外的变量。本研究的重点是,在初次就诊时,额外数据的特异性是否会增强其在OAI数据集中对新发放射性KOA诊断的逻辑回归建模的预测能力。通用模型和性别特异性模型的性能相当,因为所有模型的置信区间相互重叠。然而,特征选择v后的一些相关变量是性别特异性的,这表明基线就诊时KOA的发病率与性别特异性属性相关。
性别特异性模型的这种专门化表明导致疾病发作的病因存在潜在差异,并且可能对临床医生和受试者都具有更大的实用性。例如,专门模型确定的风险因素提供了定量指标,有助于早期识别KOA风险较高的女性,促使她们在生命的早期阶段采取积极措施改善关节健康。