Kazmi Syeda Laiba, Abbas Zain, Javed Urooj, Gillani Syed Muneeb Haider, Hussain Rabia, Ahmad Sheraz, Batool Syeda Ammara, Khan Ahmad, Mughal Awab, Irfan Muhammad, Avcu Egemen, Mubarakali Azath, Alqahtani Abdulrahman Saad, Rehman Muhammad Atiq Ur
Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan.
Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan.
Int J Biol Macromol. 2025 Aug;320(Pt 1):145719. doi: 10.1016/j.ijbiomac.2025.145719. Epub 2025 Jul 3.
Current developments in tissue engineering methods and conventional implants continue to face challenges in tackling the complex avascular characteristics of articular cartilage, hindering effective repair and tissue regeneration. To overcome these challenges, this study primarily aims to achieve a synergistic solution by processing Asphaltum Punjabianum (Shilajit) incorporated polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) nanofibrous mats through electrospinning. The processed electrospun fibers were comprehensively analyzed through scanning electron microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), antimicrobial assay, degradation studies, surface roughness measurements, rheological studies, and assessment of cell viability. SEM images displayed fiber diameters as minimal as 36 nm. The FTIR analysis revealed the presence of humic acid in the fibers, which is the fundamental component responsible for antibacterial activity. The PVA/CMC/Shilajit nanofibrous mats exhibited a suitable elastic modulus of about 110 MPa and ultimate tensile strength around 40 MPa, surpassing the previously reported PVA/chitosan nanofibers. Contrary to the earlier reported systems, which measured a limited surface roughness of 0.78 μm, the Shilajit-loaded mats achieved a surface roughness of the value 1.7 μm, which lies in the optimal range of 1.0-2.0 μm for better cell adhesion and proliferation. The mats displayed favorable swelling ratio of 80 % on day 7, which enabled better cell migration and the exchange of nutrients beyond the limitations of typical hydrogels, that often lack interconnected porous structures. Moreover, the degradation profile showed that the mats exhibited a rapid 27 % degradation rate through the first 48 h, promoting rapid cell infiltration while sustaining degradation until the value reached 52 % over 14 days, ensuring structural longevity. The system demonstrated superior antimicrobial properties conferred through the incorporation Shilajit into the scaffolds, with E. coli exhibiting a 24 mm inhibition zone and S. aureus exhibiting a 34 mm inhibition zone, therefore enhancing the antibacterial properties of the scaffolds. The thorough analysis of characteristics like surface roughness, degradability, and cell proliferation renders nanofibrous mats an appropriate option for cartilage repair. The comprehensive examination of these nanofibrous mats confirms their potential socio-economic benefits in tackling significant issues in cartilage regeneration.
组织工程方法和传统植入物的当前发展在应对关节软骨复杂的无血管特性方面仍面临挑战,这阻碍了有效的修复和组织再生。为了克服这些挑战,本研究的主要目的是通过静电纺丝加工掺入了旁遮普沥青(希拉季特)的聚乙烯醇(PVA)和羧甲基纤维素(CMC)纳米纤维垫来实现一种协同解决方案。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、抗菌试验、降解研究、表面粗糙度测量、流变学研究以及细胞活力评估等对加工后的电纺纤维进行了全面分析。SEM图像显示纤维直径最小可达36纳米。FTIR分析表明纤维中存在腐殖酸,这是具有抗菌活性的基本成分。PVA/CMC/希拉季特纳米纤维垫表现出约110兆帕的合适弹性模量和40兆帕左右的极限拉伸强度,超过了先前报道的PVA/壳聚糖纳米纤维。与先前报道的表面粗糙度仅为0.78微米的系统不同,负载希拉季特的垫子表面粗糙度达到1.7微米,处于1.0 - 2.0微米的最佳范围内,有利于更好的细胞黏附和增殖。这些垫子在第7天显示出80%的良好溶胀率,这使得细胞迁移和营养物质交换优于典型水凝胶的限制,因为典型水凝胶通常缺乏相互连接的多孔结构。此外,降解曲线表明,垫子在前48小时内降解率迅速达到27%,促进细胞快速浸润,同时持续降解,直到14天内降解率达到52%,确保结构寿命。该系统通过将希拉季特掺入支架中表现出卓越的抗菌性能,大肠杆菌的抑菌圈为24毫米,金黄色葡萄球菌的抑菌圈为34毫米,从而增强了支架的抗菌性能。对表面粗糙度、降解性和细胞增殖等特性的全面分析使纳米纤维垫成为软骨修复的合适选择。对这些纳米纤维垫的全面检查证实了它们在解决软骨再生重大问题方面潜在的社会经济效益。