Denayer Menthy, Alfio Eligia, Díaz María Alejandra, Sartori Massimo, De Groote Friedl, De Pauw Kevin, Verstraten Tom
Robotics & Multibody Mechanics (R&MM) Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, 1050, Belgium.
Flanders Make, Brussels, Belgium.
J Neuroeng Rehabil. 2025 Jul 4;22(1):149. doi: 10.1186/s12984-025-01686-w.
This PRISMA systematic review covers the literature on predictive, musculoskeletal simulations. First, we define predictive movement for musculoskeletal systems, as the current literature suffers from inconsistent nomenclature. We distinguish two methods of prediction. The first uses neural models, like muscle-reflex-based and central pattern generator models. The second uses optimization, to make up for the lack of a neural model, like optimal control and deep reinforcement learning. For each method, we illustrate the main concepts and report accuracies, simulation times and limitations. Moreover, we identified key works over the past 50 years, which are fundamental for the current state-of-the-art. The majority of works employ optimization. We recognize six classes of cost function terms and note they are often combined using linear combinations. We describe musculoskeletal models, their muscle model, ground contact model and personalization. Similarly, we identify key software like OpenSim and SCONE. Additionally, we provide an overview of simulated movements, pathologies and assistive devices. We emphasize the difference in tracking simulations and prediction, while clarifying the benefits of using experimental data to predict movement. Finally, we call for quantitative validation to establish comprehensive comparisons between methods. To this end, we share a list of works open-sourcing their codes.
本PRISMA系统评价涵盖了有关预测性肌肉骨骼模拟的文献。首先,由于当前文献中存在命名不一致的问题,我们对肌肉骨骼系统的预测性运动进行了定义。我们区分了两种预测方法。第一种使用神经模型,如基于肌肉反射的模型和中枢模式发生器模型。第二种使用优化方法,以弥补神经模型的不足,如最优控制和深度强化学习。对于每种方法,我们阐述了主要概念,并报告了准确率、模拟时间和局限性。此外,我们还确定了过去50年中的关键著作,这些著作是当前技术水平的基础。大多数著作采用了优化方法。我们识别出六类成本函数项,并指出它们通常使用线性组合进行组合。我们描述了肌肉骨骼模型、其肌肉模型、地面接触模型和个性化。同样,我们识别出了关键软件,如OpenSim和SCONE。此外,我们还提供了模拟运动、病理和辅助设备的概述。我们强调了跟踪模拟和预测之间的差异,同时阐明了使用实验数据预测运动的好处。最后,我们呼吁进行定量验证,以在方法之间建立全面的比较。为此,我们分享了一份开源其代码的著作列表。