Suppr超能文献

基于机器学习的全脑和梗死灶多回波平面成像动脉自旋标记磁共振成像(ASL)影像组学对急性缺血性卒中的预后预测

Machine learning-based prognostic prediction for acute ischemic stroke using whole-brain and infarct multi-PLD ASL radiomics.

作者信息

Wang Zhenyu, Jiang Chaojun, Zhang Xianxian, Mu Tianchi, Li Qingqing, Wang Shu, Dong Congsong, Shen Yuan, Dai Zhenyu, Chen Fei

机构信息

Department of Radiology, Bengbu Third People's Hospital, Bengbu, Anhui, China.

Department of Radiology, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, Yancheng, Jiangsu, China.

出版信息

BMC Med Imaging. 2025 Jul 4;25(1):267. doi: 10.1186/s12880-025-01807-w.

Abstract

INTRODUCTION

Accurate early prognostic prediction for acute ischemic stroke (AIS) is essential for guiding personalized treatment. This study aimed to assess the predictive value of radiomics features from whole-brain and infarct cerebral blood flow (CBF) images using multiple post-labeling delay arterial spin labeling (multi-PLD ASL), and to develop a prediction model incorporating clinical risk factors.

METHODS

Radiomics features were extracted from the whole-brain and infarct regions based on multi-PLD ASL CBF images of 110 AIS patients. Five machine learning algorithms were used to construct radiomics models (whole-brain, infarct, and combined), clinical models, and comprehensive models integrating radiomics and clinical data. Model performance and clinical utility were assessed using receiver operating characteristic and decision curve analyses. Model stability was evaluated via 5000 permutation tests, and differences in the area under the curve (AUC) were compared using the DeLong test. Shapley Additive exPlanation was used to interpret feature contributions.

RESULTS

The whole-brain and infarct radiomics models showed similar predictive performance. The combined radiomics models generally outperformed the infarct-only models. Additionally, no significant differences were observed between the combined radiomics models and the clinical models across the five algorithms. The comprehensive models, which integrated both radiomics and clinical features, demonstrated superior performance compared to both the clinical and combined radiomics models. Among all models, the comprehensive model based on a support vector machine achieved the highest predictive performance (AUC = 0.904). Its predictive capability was primarily driven by the baseline National Institutes of Health Stroke Scale score, age, infarct shape features, and higher-order statistical and texture features derived from both infarct and whole-brain CBF images.

CONCLUSIONS

The whole-brain CBF radiomics features of multi-PLD ASL can replace the infarct radiomics features that need to be delineated. Combined radiomics models outperformed infarct-only models and performed similarly to clinical models, which is applicable to AIS patients with incomplete clinical data. The comprehensive model integrates multi-PLD ASL CBF radiomics and clinical data, providing a safe and accurate tool for early prognosis prediction in AIS patients.

摘要

引言

对急性缺血性卒中(AIS)进行准确的早期预后预测对于指导个体化治疗至关重要。本研究旨在评估使用多次标记后延迟动脉自旋标记(multi-PLD ASL)从全脑和梗死脑血流量(CBF)图像中提取的放射组学特征的预测价值,并建立一个纳入临床危险因素的预测模型。

方法

基于110例AIS患者的multi-PLD ASL CBF图像,从全脑和梗死区域提取放射组学特征。使用五种机器学习算法构建放射组学模型(全脑、梗死和联合)、临床模型以及整合放射组学和临床数据的综合模型。使用受试者工作特征曲线和决策曲线分析评估模型性能和临床实用性。通过5000次置换检验评估模型稳定性,并使用DeLong检验比较曲线下面积(AUC)的差异。使用Shapley加性解释来解释特征贡献。

结果

全脑和梗死放射组学模型显示出相似的预测性能。联合放射组学模型总体上优于仅梗死模型。此外,在五种算法中,联合放射组学模型与临床模型之间未观察到显著差异。整合了放射组学和临床特征的综合模型与临床模型和联合放射组学模型相比表现出更优的性能。在所有模型中,基于支持向量机的综合模型实现了最高的预测性能(AUC = 0.904)。其预测能力主要由基线美国国立卫生研究院卒中量表评分、年龄、梗死形状特征以及从梗死和全脑CBF图像中提取的高阶统计和纹理特征驱动。

结论

multi-PLD ASL的全脑CBF放射组学特征可以替代需要勾勒的梗死放射组学特征。联合放射组学模型优于仅梗死模型,且与临床模型表现相似,适用于临床数据不完整的AIS患者。综合模型整合了multi-PLD ASL CBF放射组学和临床数据,为AIS患者的早期预后预测提供了一种安全准确的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7580/12228200/cfc460602cee/12880_2025_1807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验