Karaman Cansu Zeytun, Raman Venkatesan Thulasinath, von Szczepanski Johannes, Nüesch Frank A, Opris Dorina M
Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology (EMPA) 8600 Duebendorf Switzerland
Ecole Polytechnique Federale de Lausanne (EPFL) 1015 Lausanne Switzerland.
J Mater Chem C Mater. 2025 Jun 20;13(31):15886-15896. doi: 10.1039/d5tc01539a. eCollection 2025 Aug 7.
Dielectric elastomer actuators (DEAs) are soft transducers with great potential in soft robotics applications. Reducing the driving voltage and increasing the reliability of DEAs remain major challenges that need to be addressed. This can be achieved using thin dielectric elastomer films with high dielectric permittivity and low Young's modulus. Herein, high dielectric permittivity polysiloxanes were synthesized by functionalizing a polymethyvinylsiloxane with varying ratios of polar 3-mercaptosulfolane and mercaptobutyl groups, which allows for fine-tuning the dielectric permittivity of the resulting polymers. Thin films were cast using the doctor blade process and subsequently cross-linked a UV-induced thiol-ene addition reaction to yield elastomers with a maximum dielectric permittivity of 15 at 1 Hz caused by the permanent dipole polarization. Differential scanning calorimetry shows a glass transition temperature ( ) below room temperature for all polymers. Dielectric impedance spectroscopy at different frequencies and temperatures revealed a secondary relaxation transition attributed to adsorbed water influencing the dielectric response of nearby polar groups. While such effects have been observed in other polymers, this is the first time they have been demonstrated in polar polysiloxanes. The polymer containing half of the repeat units modified by the sulfonyl group and half by butyl exhibited the most suitable dielectric and mechanical properties and, therefore, was further investigated as a dielectric in actuators. DEAs constructed from it can be operated over a wide voltage range and exhibit a lateral actuation strain of 7.2% at 14 V μm. Stack actuators constructed from this material exhibited an in-thickness actuation strain of 2.5% at 13.8 V μm only, despite using a dielectric film with a thickness of 145 μm. Although our stack exhibits a lower dielectric breakdown field than stacks using acrylates or polydimethylsiloxane elastomers, it operates effectively at much lower electric fields. Since actuation scales with the inverse square of the dielectric thickness, reducing the thickness greatly enhances not only the actuation but also the breakdown field, supporting applications where low-voltage operation is critical.
介电弹性体致动器(DEA)是在软机器人应用中具有巨大潜力的软换能器。降低DEA的驱动电压并提高其可靠性仍然是需要解决的主要挑战。这可以通过使用具有高介电常数和低杨氏模量的薄介电弹性体薄膜来实现。在此,通过用不同比例的极性3-巯基环丁砜和巯基丁基对聚甲基乙烯基硅氧烷进行功能化,合成了高介电常数聚硅氧烷,这使得能够对所得聚合物的介电常数进行微调。使用刮刀法浇铸薄膜,随后通过紫外线诱导的硫醇-烯加成反应进行交联,以产生在1 Hz下由于永久偶极极化而具有最大介电常数为15的弹性体。差示扫描量热法显示所有聚合物的玻璃化转变温度( )低于室温。在不同频率和温度下的介电阻抗谱揭示了归因于吸附水影响附近极性基团介电响应的次级弛豫转变。虽然在其他聚合物中已经观察到这种效应,但这是首次在极性聚硅氧烷中得到证明。含有一半由磺酰基改性的重复单元和一半由丁基改性的重复单元的聚合物表现出最合适的介电和机械性能,因此,作为致动器中的电介质进行了进一步研究。由其构建的DEA可以在很宽的电压范围内运行,并且在14 V/μm下表现出7.2%的横向驱动应变。由这种材料构建的堆叠致动器仅在13.8 V/μm下表现出2.5%的厚度方向驱动应变,尽管使用的介电膜厚度为145μm。尽管我们的堆叠表现出比使用丙烯酸酯或聚二甲基硅氧烷弹性体的堆叠更低的介电击穿场,但它在低得多的电场下仍能有效运行。由于驱动与介电厚度的平方成反比,减小厚度不仅极大地增强了驱动,而且还增强了击穿场,支持了低电压操作至关重要的应用。