Suppr超能文献

ACES-GNN:图神经网络能学会解释活性断崖吗?

ACES-GNN: can graph neural network learn to explain activity cliffs?

作者信息

Chen Xu, Yu Dazhou, Zhao Liang, Liu Fang

机构信息

Department of Chemistry, Emory University Atlanta Georgia 30322 USA

Department of Computer Science, Emory University Atlanta Georgia 30322 USA.

出版信息

Digit Discov. 2025 Jun 30. doi: 10.1039/d5dd00012b.

Abstract

Graph Neural Networks (GNNs) have revolutionized molecular property prediction by leveraging graph-based representations, yet their opaque decision-making processes hinder broader adoption in drug discovery. This study introduces the Activity-Cliff-Explanation-Supervised GNN (ACES-GNN) framework, designed to simultaneously improve predictive accuracy and interpretability by integrating explanation supervision for activity cliffs (ACs) into GNN training. ACs, defined by structurally similar molecules with significant potency differences, pose challenges for traditional models due to their reliance on shared structural features. By aligning model attributions with chemist-friendly interpretations, the ACES-GNN framework bridges the gap between prediction and explanation. Validated across 30 pharmacological targets, ACES-GNN consistently enhances both predictive accuracy and attribution quality for ACs compared to unsupervised GNNs. Our results demonstrate a positive correlation between improved predictions and accurate explanations, offering a robust and adaptable framework to better understand and interpret ACs. This work underscores the potential of explanation-guided learning to advance interpretable artificial intelligence in molecular modeling and drug discovery.

摘要

图神经网络(GNNs)通过利用基于图的表示方式彻底改变了分子性质预测,但它们不透明的决策过程阻碍了其在药物发现中的更广泛应用。本研究引入了活性悬崖解释监督GNN(ACES-GNN)框架,旨在通过将活性悬崖(ACs)的解释监督集成到GNN训练中,同时提高预测准确性和可解释性。ACs由具有显著效力差异的结构相似分子定义,由于传统模型依赖共享结构特征,它们给传统模型带来了挑战。通过将模型归因与化学友好的解释对齐,ACES-GNN框架弥合了预测与解释之间的差距。与无监督GNN相比,ACES-GNN在30个药理学靶点上经过验证,始终提高了ACs的预测准确性和归因质量。我们的结果表明,改进的预测与准确的解释之间存在正相关,提供了一个强大且适应性强的框架,以更好地理解和解释ACs。这项工作强调了解释引导学习在推进分子建模和药物发现中可解释人工智能方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d99d/12226972/7a47b5e98c2b/d5dd00012b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验