Suppr超能文献

通过构效关系分析揭示强效抗结核天然产物

Unlocking potent anti-tuberculosis natural products through structure-activity relationship analysis.

作者信息

Abdjul Delfly Booby, Budiyanto Fitri, Wibowo Joko Tri, Murniasih Tutik, Rahmawati Siti Irma, Indriani Dwi Wahyu, Putra Masteria Yunovilsa, Bayu Asep

机构信息

Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta Bogor KM.46, Cibinong, Bogor, West Java, 16911, Indonesia.

North Sulawesi Research and Development Agency, Jalan 17 Agustus, Manado, North Sulawesi, 95116, Indonesia.

出版信息

Nat Prod Bioprospect. 2025 Jul 7;15(1):44. doi: 10.1007/s13659-025-00529-4.

Abstract

Tuberculosis (TB) remains a world health problem due to the high number of affected individuals, high mortality rates, prolonged treatment durations, and the increasing prevalence of resistance to commercial TB drugs. The emergence of resistance to anti-TB drugs has necessitated urgent research into drug discovery and development, focusing on novel mechanisms of action against Mycobacterium tuberculosis resistant strains. Natural products, with their remarkable structural diversity and bioactivity, are promising sources for the development of new TB drugs or the identification of potential chemical scaffolds exhibiting potent and novel biological activity with minimal or no cytotoxicity to host cells. This review focuses on potent anti-TB natural products with minimum inhibitory concentration (MIC) values below 5 µg mL and examines their structure-activity relationship (SAR). Significant characteristics and relevant biological properties of each compound were analysed using a Random Forest, machine learning algorithm, to explore SAR. Using molecular docking, AutoDock Vina was utilised to assess molecular interactions with protein targets, and predictive accuracy was enhanced using the XGBoost machine learning model. These analyses provide insights into the mode of action of these compounds and help identify key structural features contributing to their anti-TB activity. In addition, this review examines the correlation between the potency of selected anti-TB compounds and their cytotoxicity, offering valuable insights for the identification of promising scaffolds in TB drug discovery.

摘要

由于受影响个体数量众多、死亡率高、治疗周期长以及对商用抗结核药物耐药性的日益普遍,结核病仍然是一个全球性的健康问题。抗结核药物耐药性的出现使得迫切需要开展药物研发研究,重点关注针对结核分枝杆菌耐药菌株的新作用机制。天然产物具有显著的结构多样性和生物活性,是开发新型抗结核药物或鉴定对宿主细胞具有最小或无细胞毒性的潜在化学骨架的有前途的来源。本综述重点关注最低抑菌浓度(MIC)值低于5 μg/mL的强效抗结核天然产物,并研究它们的构效关系(SAR)。使用随机森林机器学习算法分析了每种化合物的显著特征和相关生物学特性,以探索构效关系。利用分子对接,使用AutoDock Vina评估与蛋白质靶点之间分子相互作用,并使用XGBoost机器学习模型提高预测准确性。这些分析为这些化合物的作用方式提供见解,并有助于确定有助于其抗结核活性的关键结构特征。此外,本综述研究了所选抗结核化合物的效力与其细胞毒性之间的相关性,为在抗结核药物研发中鉴定有前景的骨架提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c59a/12234934/b7a39b7fc213/13659_2025_529_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验