Suppr超能文献

利用早期生物标志物变化和治疗依从性预测慢性髓性白血病缓解期患者的复发风险。

Using Early Biomarker Change and Treatment Adherence to Predict Risk of Relapse Among Patients With Chronic Myeloid Leukemia Who Are in Remission.

作者信息

Montano-Campos J Felipe, Hahn Erin, Haupt Eric, Radich Jerald, Bansal Aasthaa

机构信息

CHOICE Institute, School of Pharmacy, University of Washington, Seattle, WA.

Department of Health Systems Sciences, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA.

出版信息

JCO Clin Cancer Inform. 2025 Jul;9:e2500003. doi: 10.1200/CCI-25-00003. Epub 2025 Jul 7.

Abstract

PURPOSE

There is little guidance for decision making in chronic myeloid leukemia (CML) after patients achieve molecular remission. Our study addresses this gap by developing a risk prediction model for molecular relapse using early longitudinal factors, such as BCR::ABL1 biomarker-level changes and treatment adherence.

METHODS

We analyzed electronic health record data of patients with CML diagnosed between 2007 and 2019 from an integrated health system. We used a time-to-event modeling framework using a Cox proportional hazards approach where we evaluated time from molecular remission to molecular relapse. The main predictors were early changes in BCR::ABL1 levels from treatment initiation to the first follow-up measurement (typically around 3 months) and treatment adherence in the first 6 months, categorized as perfect (≥0.98) or less-than-perfect (<0.98). Model performance was assessed through five-fold cross-validation combined with 100 Monte Carlo bootstrapping iterations to ensure robustness and minimize bias.

RESULTS

Patients with early improvement in BCR::ABL1 levels had a 70% lower risk relapse (hazard ratio [HR], 0.30 [95% CI, 0.15 to 0.59]) compared with those without early molecular response. Perfect adherence during this critical early phase of treatment was associated with a 56% lower relapse risk (HR, 0.44 [95% CI, 0.22 to 0.85]). Predictive accuracy was high at 6 months (AUC, 0.90; 95% CI, 0.87 to 0.95) and 1-year postremission (AUC, 0.78; 95% CI, 0.74 to 0.81). Relapse risk was significantly higher among Black, Asian, and Hispanic patients compared with non-Hispanic White patients.

CONCLUSION

Early biomarker trends and adherence after treatment initiation are critical for accurately predicting relapse among patients who achieve molecular remission. The proposed model addresses a gap in guidance after molecular remission and has the potential to enable personalized monitoring and optimize surveillance strategies, offering transformative potential for CML care.

摘要

目的

慢性粒细胞白血病(CML)患者实现分子缓解后,在决策方面几乎没有指导。我们的研究通过使用早期纵向因素(如BCR::ABL1生物标志物水平变化和治疗依从性)开发分子复发风险预测模型,填补了这一空白。

方法

我们分析了2007年至2019年间在一个综合医疗系统中诊断为CML的患者的电子健康记录数据。我们使用了一种事件发生时间建模框架,采用Cox比例风险方法,评估从分子缓解到分子复发的时间。主要预测因素是从治疗开始到首次随访测量(通常约3个月)时BCR::ABL1水平的早期变化,以及前6个月的治疗依从性,分为完美(≥0.98)或不完美(<0.98)。通过五折交叉验证结合100次蒙特卡洛自助抽样迭代评估模型性能,以确保稳健性并最小化偏差。

结果

与没有早期分子反应的患者相比,BCR::ABL1水平早期改善的患者复发风险降低70%(风险比[HR],0.30[95%CI,0.15至0.59])。在治疗的关键早期阶段完美依从与复发风险降低56%相关(HR,0.44[95%CI,0.22至0.85])。在缓解后6个月(AUC,0.90;95%CI,0.87至0.95)和1年时(AUC,0.78;95%CI,0.74至0.81)预测准确性较高。与非西班牙裔白人患者相比,黑人、亚洲人和西班牙裔患者的复发风险显著更高。

结论

治疗开始后的早期生物标志物趋势和依从性对于准确预测实现分子缓解的患者的复发至关重要。所提出的模型填补了分子缓解后指导方面的空白,有可能实现个性化监测并优化监测策略,为CML护理带来变革潜力。

相似文献

3
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
6
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

本文引用的文献

1
Oncologist-Patient Concordance and Treatment Adherence in Chronic Myeloid Leukemia.
JAMA Netw Open. 2025 Apr 1;8(4):e258039. doi: 10.1001/jamanetworkopen.2025.8039.
2
Association of Medication Adherence With Health Outcomes in the ISCHEMIA Trial.
J Am Coll Cardiol. 2022 Aug 23;80(8):755-765. doi: 10.1016/j.jacc.2022.05.045.
4
A Value-of-Information Framework for Personalizing the Timing of Surveillance Testing.
Med Decis Making. 2022 May;42(4):474-486. doi: 10.1177/0272989X211049213. Epub 2021 Nov 7.
5
Predictors of tyrosine kinase inhibitor adherence trajectories in patients with newly diagnosed chronic myeloid leukemia.
J Oncol Pharm Pract. 2021 Dec;27(8):1842-1852. doi: 10.1177/1078155220970616. Epub 2020 Nov 11.
7
Are we ready to use precision medicine in chronic myeloid leukemia practice?
Haematologica. 2019 Dec;104(12):2327-2329. doi: 10.3324/haematol.2019.231753.
9
Chronic Myeloid Leukemia: Long-Term Outcome Data in the Imatinib Era.
Indian J Hematol Blood Transfus. 2019 Jan;35(1):37-42. doi: 10.1007/s12288-018-1009-y. Epub 2018 Sep 8.
10
Chronic Myeloid Leukemia, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology.
J Natl Compr Canc Netw. 2018 Sep;16(9):1108-1135. doi: 10.6004/jnccn.2018.0071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验