Suppr超能文献

多维睡眠健康与痴呆风险:英国生物银行的一项前瞻性研究

Multi-dimensional sleep health and dementia risk: a prospective study in the UK Biobank.

作者信息

Huang Tianyi, Beydoun May A, Kianersi Sina, Redline Susan, Launer Lenore J

机构信息

Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute On Aging, Baltimore, MD, USA.

Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

BMC Med. 2025 Jul 7;23(1):410. doi: 10.1186/s12916-025-04251-3.

Abstract

BACKGROUND

The intricate interplay of various sleep characteristics may influence dementia risk through different pathogenic pathways. However, few studies have examined multi-dimensional sleep health in relation to dementia risk or explored potential etiologic heterogeneity by dementia subtypes.

METHODS

Our study included 313,248 UK Biobank participants aged ≥ 50 years who were dementia-free in 2006-2010. Incident dementia was identified using validated algorithms through primary care, hospital admissions, or death records through 2022. Multi-dimensional sleep health was evaluated based on seven self-reported sleep-related factors and assessed in two ways: (1) using an a priori sleep health score (SHS) ranging from 0 to 7, with higher scores indicating healthier sleep, and (2) through data-driven sleep health patterns identified by latent class analysis. We used Cox proportional hazards models to estimate the associations between multi-dimensional sleep health and risk of all-cause dementia, vascular dementia (VaD), and Alzheimer's disease (AD).

RESULTS

There were 7458 incident all-cause dementia cases (1636 VaD, 3376 AD) after 4,165,352 person-years of follow-up. After adjusting for potential confounders, the hazard ratio (95% CI) comparing participants with SHS of 0-2 (worst sleep) vs 6-7 (best sleep) was 1.76 (1.52, 2.05) for all-cause dementia (p-trend < 0.0001), 2.13 (1.61, 2.83) for VaD (p-trend < 0.0001), and 1.55 (1.22, 1.97) for AD (p-trend < 0.57). We identified six multi-dimensional sleep health patterns, including relatively healthy sleep, insomnia with short sleep duration, non-restorative sleep with evening chronotype, insomnia with non-restorative sleep, snoring with daytime sleepiness and napping, and severely disturbed sleep with multiple symptoms and daytime impairment. Compared with the healthy sleep pattern, all other five sleep patterns were significantly associated with 8-85% higher all-cause dementia risk and 11-148% higher VaD risk, whereas only the severely disturbed sleep pattern was associated with 56% higher AD risk (95% CI: 1.21, 2.01).

CONCLUSIONS

Poor multi-dimensional sleep health, either assessed by a simple SHS or characterized by sleep clusters, was associated with higher incident dementia risk. There is substantial heterogeneity in multi-dimensional sleep health patterns and their associations with different dementia outcomes. Understanding the specific sleep health profiles associated with dementia risk may help to identify high-risk populations and inform more targeted interventions.

摘要

背景

各种睡眠特征之间复杂的相互作用可能通过不同的致病途径影响痴呆风险。然而,很少有研究探讨多维睡眠健康与痴呆风险的关系,或按痴呆亚型探索潜在的病因异质性。

方法

我们的研究纳入了313248名年龄≥50岁的英国生物银行参与者,他们在2006 - 2010年期间无痴呆症。通过初级保健、医院入院记录或截至2022年的死亡记录,使用经过验证的算法确定新发痴呆症。基于七个自我报告的睡眠相关因素评估多维睡眠健康,并通过两种方式进行评估:(1)使用先验睡眠健康评分(SHS),范围为0至7,分数越高表明睡眠越健康;(2)通过潜在类别分析确定的数据驱动睡眠健康模式。我们使用Cox比例风险模型来估计多维睡眠健康与全因痴呆、血管性痴呆(VaD)和阿尔茨海默病(AD)风险之间的关联。

结果

经过4165352人年的随访,有7458例新发全因痴呆病例(1636例VaD,3376例AD)。在调整潜在混杂因素后,将SHS为0 - 2(最差睡眠)的参与者与SHS为6 - 7(最佳睡眠)的参与者进行比较,全因痴呆的风险比(95%CI)为1.76(1.52,2.05)(p趋势<0.0001),VaD为2.13(1.61,2.83)(p趋势<0.0001),AD为1.55(1.22,1.97)(p趋势<0.57)。我们确定了六种多维睡眠健康模式,包括相对健康的睡眠、睡眠持续时间短的失眠、具有夜间时型的非恢复性睡眠、伴有非恢复性睡眠的失眠、伴有白天嗜睡和打盹的打鼾以及伴有多种症状和白天功能障碍的严重睡眠障碍。与健康睡眠模式相比,所有其他五种睡眠模式与全因痴呆风险高8 - 85%和VaD风险高11 - 148%显著相关,而只有严重睡眠障碍模式与AD风险高56%相关(95%CI:1.21,2.01)。

结论

通过简单的SHS评估或由睡眠集群特征化的多维睡眠健康状况不佳与更高的新发痴呆风险相关。多维睡眠健康模式及其与不同痴呆结局的关联存在很大异质性。了解与痴呆风险相关的特定睡眠健康特征可能有助于识别高危人群并为更有针对性的干预提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验