Cai Liming, Jansen Robert K, Havird Justin C
Department of Integrative Biology The University of Texas at Austin Austin Texas USA.
Ecol Evol. 2025 Jul 6;15(7):e71737. doi: 10.1002/ece3.71737. eCollection 2025 Jul.
Parasitic plants, characterized by their dependency on host organisms for nutrients, have displayed far-reaching alterations in physiology and genetics. While significant gene losses and relaxed selection have been documented in the nuclear and plastid genomes, how parasitism impacts the molecular evolution and function of mitochondria has remained controversial. One of the main culprits hindering our understanding in this area is the lack of knowledge on nuclear-encoded mitochondrial-targeted genes (N-mt), which encode most mitochondrial oxidative phosphorylation (OXPHOS) proteins. By conducting a comprehensive survey of N-mt genes across angiosperms, we demonstrated significant gene losses and occasional horizontal transfers associated with relaxed selection unique to holoparasitic Orobanchaceae. These putative losses and transfers have the potential to affect mitochondrial function directly and cause cytonuclear incompatibility because of breakdown between co-evolved protein complexes from mitochondrial and nuclear genomes. Our physiological assessments using high-resolution respirometry revealed that despite genetic alterations, holoparasitic Orobanchaceae maintained OXPHOS capacity but relied more on the fully nuclear-encoded succinate dehydrogenase (complex II). Our results document the first example of biased loss of nuclear-encoded OXPHOS genes without accompanying mitochondrial-encoded gene loss in parasitic plants, expanding on previous studies and elucidating the mechanisms underlying the preservation of OXPHOS function despite genomic reduction.
寄生植物依赖宿主生物体获取营养,其生理和遗传发生了深远变化。虽然在核基因组和质体基因组中已记录到显著的基因丢失和选择放松,但寄生如何影响线粒体的分子进化和功能仍存在争议。阻碍我们在这一领域理解的主要原因之一是缺乏对核编码线粒体靶向基因(N-mt)的了解,这些基因编码大多数线粒体氧化磷酸化(OXPHOS)蛋白。通过对被子植物中的N-mt基因进行全面调查,我们证明了全寄生列当科植物存在与选择放松相关的显著基因丢失和偶尔的水平转移。这些假定的丢失和转移有可能直接影响线粒体功能,并由于线粒体和核基因组共同进化的蛋白质复合物之间的破坏而导致细胞核与细胞质不相容。我们使用高分辨率呼吸测定法进行的生理评估表明,尽管存在遗传改变,但全寄生列当科植物仍保持氧化磷酸化能力,但更多地依赖完全由核编码的琥珀酸脱氢酶(复合体II)。我们的研究结果记录了寄生植物中首个核编码氧化磷酸化基因有偏向性丢失而线粒体编码基因未伴随丢失的例子,扩展了先前的研究,并阐明了尽管基因组减少但氧化磷酸化功能得以保留的潜在机制。