Soleimani Najme, Iraji Armin, van Erp Theo G M, Belger Aysenil, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, California, USA.
Hum Brain Mapp. 2025 Jul;46(10):e70262. doi: 10.1002/hbm.70262.
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC studies utilize fixed spatial maps and evaluate transient changes in coupling among time courses estimated from independent component analysis (ICA). This manuscript presents a complementary approach that relaxes this assumption by spatially reordering the components dynamically at each time point to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) patients and healthy controls (HCs). Functional dysconnectivity between different brain regions has been reported in SZ, yet the neural mechanisms behind it remain elusive. Using resting-state fMRI and ICA on a dataset consisting of 151 SZ patients and 160 age and gender-matched HCs, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated spatially constrained ICA approach. We develop several summaries of our functional network connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient between full time series, and a dynamic sense, computed using a sliding window approach followed by reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis revealed significantly stronger connectivity between subcortical (SC), auditory (AUD), and visual (VIS) networks in patients, as well as hypoconnectivity in the sensorimotor (SM) network relative to controls. sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control (CC)/default mode network (DMN), as well as SC/AUD/SM/cerebellar (CB) and VIS gradients. Furthermore, we observed significant differences in the sFNGs between groups in SC and CB domains. dFNG analysis suggested that SZ patients spend significantly more time in a SC/CB state based on the first gradient, while HCs favor the SM/DMN state. For the second gradient, however, patients exhibited significantly higher activity in CB domains, contrasting with HCs' DMN engagement. The gradient synchrony analysis conveyed more shifts between SM/SC networks and transmodal CC/DMN networks in patients. In addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM, and CB domains in SZ patients compared to HCs. To recap, our results advance our understanding of brain network modulation by examining smooth connectivity trajectories. This provides a more complete spatiotemporal summary of the data, contributing to the growing body of current literature regarding the functional dysconnectivity in SZ patients. By employing dFNG, we highlight a new perspective to capture large-scale fluctuations across the brain while maintaining the convenience of brain networks and low-dimensional summary measures.
动态功能网络连接性(dFNC)分析是一种广泛应用于研究脑功能的方法,有助于深入了解脑网络如何随时间演变。通常,dFNC研究使用固定的空间图谱,并评估从独立成分分析(ICA)估计的时间序列之间耦合的瞬态变化。本文提出了一种补充方法,通过在每个时间点动态地对成分进行空间重新排序来放宽这一假设,以优化功能网络连接性(FNC)中的平滑梯度(即ICA连接值之间的平滑梯度)。本文提出了几种方法来总结随时间变化的动态FNC梯度(dFNG),首先是静态FNC梯度(sFNG),然后探索重新排序属性以及梯度本身的动态变化。然后,我们将这种方法应用于精神分裂症(SZ)患者和健康对照(HC)的数据集。已有报道称SZ患者不同脑区之间存在功能失调连接,但其背后的神经机制仍不清楚。我们使用静息态功能磁共振成像和ICA,对由151名SZ患者和160名年龄和性别匹配的HC组成的数据集进行分析,采用完全自动化的空间约束ICA方法为每个受试者提取53个内在连接网络(ICN)。我们开发了几种功能网络连接梯度分析的总结方法,一种是静态意义上的,计算为全时间序列之间的皮尔逊相关系数,另一种是动态意义上的,使用滑动窗口方法,然后根据计算出的梯度进行重新排序,并评估组间差异。静态连接性分析显示,患者的皮质下(SC)、听觉(AUD)和视觉(VIS)网络之间的连接性明显更强,并且相对于对照组,感觉运动(SM)网络的连接性较低。sFNG分析突出了患者和HC在认知控制(CC)/默认模式网络(DMN)以及SC/AUD/SM/小脑(CB)和VIS梯度上的独特聚类模式。此外,我们观察到SC和CB区域的组间sFNG存在显著差异。dFNG分析表明,基于第一个梯度,SZ患者在SC/CB状态下花费的时间明显更多,而HC则倾向于SM/DMN状态。然而,对于第二个梯度,患者在CB区域表现出明显更高的活动,这与HC在DMN中的参与情况形成对比。梯度同步分析表明,患者的SM/SC网络和跨模态CC/DMN网络之间的转换更多。此外,与HC相比,dFNG耦合揭示了SZ患者SC、SM和CB区域之间不同的连接模式。总之,我们的结果通过检查平滑的连接轨迹,推进了我们对脑网络调制的理解。这提供了更完整的时空数据总结,有助于当前关于SZ患者功能失调连接的文献不断增加。通过采用dFNG,我们突出了一个新的视角来捕捉全脑的大规模波动,同时保持脑网络的便利性和低维总结测量。