Suppr超能文献

从行为中的非人灵长类动物的细胞外记录中解读神经元身份的策略。

Strategies to decipher neuron identity from extracellular recordings in behaving non-human primates.

作者信息

Herzfeld David J, Hall Nathan J, Lisberger Stephen G

机构信息

Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.

出版信息

J Neurosci. 2025 Jul 8. doi: 10.1523/JNEUROSCI.0230-25.2025.

Abstract

Identification of neuron type is critical when using extracellular recordings in awake, behaving animal subjects to understand computation in neural circuits. Yet, modern recording probes have limited power to resolve neuron identity. Here, we present a generalizable framework for assigning neuron type from extracellular recordings in non-human primates. The framework uses a combination of logic, circuit architecture, laminar information, and functional discharge properties. We apply the framework to the well-characterized architecture of the cerebellar circuit by using well-validated strategies to perform expert identification for a subset of extracellular neural recordings in behaving male rhesus macaques. We then use the subpopulation of expert-labeled neurons to train deep-learning classifiers to perform neuron identification with readily-accessible extracellular features as inputs. Waveform, discharge statistics, and anatomical layer each provide information about neuron identity for a sizable fraction of cerebellar units. Together, as inputs to a deep-learning classifier, the features perform even better. Our tools and methodologies, validated during smooth pursuit eye movements in the cerebellar floccular complex of awake behaving monkeys, can guide expert identification of neuron type across neural circuits and species by leveraging circuit layer, waveforms, discharge statistics, anatomical context, and circuit-specific knowledge. Although validated here for the cerebellum, our framework has potential efficacy for many brain areas. Thus, our generalized methodology lays essential groundwork for characterization of information processing at the level of neural circuits. To understand how the brain performs computations in the service of behavior, we develop a generalizable framework to link neuron type to functional activity within well-characterized neural circuits. Here, we show how features derived from extracellular recordings provide complementary information to disambiguate neuron identity, using the cerebellar circuit as an exemplar.

摘要

在清醒的行为动物受试者中使用细胞外记录来理解神经回路中的计算时,神经元类型的识别至关重要。然而,现代记录探针分辨神经元身份的能力有限。在这里,我们提出了一个可推广的框架,用于从非人灵长类动物的细胞外记录中确定神经元类型。该框架结合了逻辑、电路结构、层状信息和功能放电特性。我们通过使用经过充分验证的策略,对行为中的雄性恒河猴的一部分细胞外神经记录进行专家识别,将该框架应用于特征明确的小脑回路结构。然后,我们使用专家标记的神经元亚群来训练深度学习分类器,以易于获取的细胞外特征作为输入来进行神经元识别。波形、放电统计和解剖层各自为相当一部分小脑单元提供了有关神经元身份的信息。作为深度学习分类器的输入,这些特征一起表现得更好。我们的工具和方法在清醒行为猴子的小脑绒球复合体的平稳跟踪眼球运动过程中得到了验证,可以通过利用电路层、波形、放电统计、解剖背景和特定于电路的知识,指导跨神经回路和物种的神经元类型的专家识别。尽管这里针对小脑进行了验证,但我们的框架对许多脑区都有潜在的功效。因此,我们的通用方法为在神经回路层面表征信息处理奠定了重要基础。为了理解大脑如何为行为进行计算,我们开发了一个可推广的框架,将神经元类型与特征明确的神经回路中的功能活动联系起来。在这里,我们以小脑回路为例,展示了从细胞外记录中提取的特征如何提供补充信息来消除神经元身份的歧义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验