Lu Linjie, Fuji Kana, Guyomar Tristan, Lieb Michèle, André Marie, Tanida Sakurako, Nonomura Makiko, Hiraiwa Tetsuya, Alcheikh Yara, Yennek Siham, Petzold Heike, Martin-Lemaitre Cecilie, Grapin-Botton Anne, Honigmann Alf, Sano Masaki, Riveline Daniel
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Université de Strasbourg, Illkirch, France.
Nat Commun. 2025 Jul 8;16(1):6307. doi: 10.1038/s41467-025-60780-8.
Many internal organs in the body harbor a fluid-filled lumen. Lumen nucleation and fusion have been reported as dependent on organ-type during organogenesis. In contrast, the physics of lumen suggests that force balance between luminal pressure and cell mechanics leads to generic rules. However, this hypothesis lacks experimental evidence. Here we compare lumen dynamics for three different systems (MDCK cysts, pancreatic spheres, and epiblast model) by using quantitative cell biology, microfabrication, and theory. We report that the initial cell number determines the maximum number of lumens but does not impact the steady state, which is a final single lumen. We show that lumen dynamics is determined by luminal hydrostatic pressure. We also use MDCK cysts to manipulate cell adhesion and lumen volume to successfully reproduce the fusion dynamics of pancreatic spheres and epiblasts. Our results reveal self-organisation rules of lumens with relevance for morphogenesis and tissue engineering.
体内许多内部器官都有一个充满液体的管腔。据报道,在器官发生过程中,管腔的形成和融合取决于器官类型。相比之下,管腔的物理学原理表明,管腔内压力和细胞力学之间的力平衡导致了通用规则。然而,这一假设缺乏实验证据。在这里,我们通过使用定量细胞生物学、微制造和理论,比较了三种不同系统(MDCK囊肿、胰腺球体和外胚层模型)中的管腔动态。我们报告称,初始细胞数量决定了管腔的最大数量,但不影响稳态,稳态是最终的单个管腔。我们表明,管腔动态由管腔内静水压力决定。我们还利用MDCK囊肿来操纵细胞粘附和管腔体积,成功再现了胰腺球体和外胚层的融合动态。我们的结果揭示了与形态发生和组织工程相关的管腔自组织规则。