Gencel Melis, Cofino Gisela Marrero, Hui Cang, Sahaf Zahra, Gauthier Louis, Matta Chloé, Gagné-Leroux David, Tsang Derek K L, Philpott Dana P, Ramathan Sheela, Menendez Alfredo, Bershtein Shimon, Serohijos Adrian W R
Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Quebec, Canada.
Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Quebec, Canada.
Nat Commun. 2025 Jul 9;16(1):6314. doi: 10.1038/s41467-025-61368-y.
A microbiome's composition, stability, and response to perturbations are governed by its community interaction matrix, typically quantified through pairwise competition. However, in natural environments, microbes encounter multispecies interactions, complex conditions, and unculturable members. Moreover, evolutionary and ecological processes occur on overlapping timescales, making intra-species clonal diversity a critical but poorly understood factor influencing community interactions. Here, we present Dynamic Covariance Mapping (DCM), a general approach to infer microbiome interaction matrices from abundance time-series data. By combining DCM with high-resolution chromosomal barcoding, we quantify inter- and intra-species interactions during E. coli colonization in the mouse gut under three contexts: germ-free, antibiotic-perturbed, and innate microbiota. We identify distinct temporal phases in susceptible communities: (1) destabilization upon E. coli invasion, (2) partial recolonization of native bacteria, and (3) a quasi-steady state where E. coli sub-lineages coexist with resident microbes. These phases are shaped by specific interactions between E. coli clones and community members, emphasizing the dynamic and lineage-specific nature of microbial networks. Our results reveal how ecological and evolutionary dynamics jointly shape microbiome structure over time. The DCM framework provides a scalable method to dissect complex community interactions and is broadly applicable to bacterial ecosystems both in vitro and in situ.
微生物群落的组成、稳定性及其对扰动的响应由其群落相互作用矩阵决定,通常通过成对竞争进行量化。然而,在自然环境中,微生物会遭遇多物种相互作用、复杂条件以及不可培养的成员。此外,进化和生态过程在重叠的时间尺度上发生,使得种内克隆多样性成为影响群落相互作用的一个关键但却了解甚少的因素。在此,我们提出动态协方差映射(DCM),这是一种从丰度时间序列数据推断微生物群落相互作用矩阵的通用方法。通过将DCM与高分辨率染色体条形码相结合,我们在三种情况下量化了大肠杆菌在小鼠肠道定殖过程中的种间和种内相互作用:无菌、抗生素扰动和固有微生物群。我们在易受影响的群落中识别出不同的时间阶段:(1)大肠杆菌入侵时的不稳定阶段,(2)本地细菌的部分重新定殖阶段,以及(3)大肠杆菌亚谱系与常驻微生物共存的准稳态阶段。这些阶段由大肠杆菌克隆与群落成员之间的特定相互作用塑造,强调了微生物网络的动态性和谱系特异性。我们的结果揭示了生态和进化动态如何随时间共同塑造微生物群落结构。DCM框架提供了一种可扩展的方法来剖析复杂的群落相互作用,并且广泛适用于体外和原位的细菌生态系统。