Ganji Davood Domiri, Mahboobtosi Mehdi, Chari Fateme Nadalinia
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Sci Rep. 2025 Jul 8;15(1):24396. doi: 10.1038/s41598-025-09009-8.
This work studies the flow properties of a penta hybrid nanofluid and gyrotactic microorganism influence along an elongating surface. This study uniquely investigates the interaction of gyrotactic microorganisms with a penta-hybrid nanofluid (PHNF), marking a significant advancement over previous ternary hybrid nanofluid (THNF) models by introducing enhanced thermal and biological coupling through the inclusion of five distinct nanoparticles. The numerical solution is performed using MATLAB for the ODE equations. Convective boundary conditions are used to examine the rates of heat and mass transport, and the model incorporates external factors like magnetic fields and porous media. The Buongiorno model also takes into account the impact of Brownian motion and thermophoretic forces on the volumetric fraction of the nanoparticles. The results show that an increase in the magnetic parameter (M) and porous media factor (K) leads to a decrease in both the velocity profiles x and y velocity profile. An increase in K, however, increases the temperature, concentration, and microorganism profiles. On the other hand, an increase in the ratio parameter (α) increases the velocity profile in the y-direction but decreases the temperature, concentration, and microorganism profiles. Besides, larger radiation and Brownian motion parameters both lead to increased temperature profile, while the increased Brownian parameter leads to the decrease in the concentration profile. Surprisingly, PHNF is more effective than ternary hybrid nanofluid (THNF) and has superior thermal and mass transport characteristics. The optimisation of nanofluid and microbe applications, such as heat exchangers and biotechnological processes, where effective heat and mass transmission is essential, may benefit from these discoveries.
这项工作研究了五重混合纳米流体的流动特性以及回转趋性微生物沿拉伸表面的影响。本研究独特地探究了回转趋性微生物与五重混合纳米流体(PHNF)的相互作用,通过纳入五种不同的纳米颗粒引入增强的热和生物耦合,这标志着相对于先前的三元混合纳米流体(THNF)模型有显著进步。使用MATLAB对常微分方程进行数值求解。采用对流边界条件来考察热和质量传输速率,并且该模型纳入了磁场和多孔介质等外部因素。布翁焦尔诺模型还考虑了布朗运动和热泳力对纳米颗粒体积分数的影响。结果表明,磁参数(M)和多孔介质因子(K)的增加会导致x方向速度剖面和y方向速度剖面均减小。然而,K的增加会使温度、浓度和微生物剖面增加。另一方面,比率参数(α)的增加会使y方向的速度剖面增加,但会使温度、浓度和微生物剖面减小。此外,较大的辐射和布朗运动参数都会导致温度剖面增加,而布朗参数的增加会导致浓度剖面减小。令人惊讶的是,PHNF比三元混合纳米流体(THNF)更有效,并且具有卓越的热和质量传输特性。这些发现可能有益于纳米流体和微生物应用的优化,例如在有效热和质量传递至关重要的热交换器和生物技术过程中。