Suppr超能文献

通过生物信息学和机器学习识别心肌梗死中的枢纽基因:对炎症和免疫调节的见解

Identification of hub genes in myocardial infarction by bioinformatics and machine learning: insights into inflammation and immune regulation.

作者信息

Yang Juan, Li Xiang, Ma Li, Zhang Jun

机构信息

Emergency Room, The Second People's Hospital of Dazu District, Chongqing, China.

Cardiac Catheterization Lab, The Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.

出版信息

Front Mol Biosci. 2025 Jun 24;12:1607096. doi: 10.3389/fmolb.2025.1607096. eCollection 2025.

Abstract

OBJECTIVE

This study aims to identify and validate key genes involved in the progression of myocardial infarction (MI) and to investigate their roles in inflammatory response, immune regulation, and myocardial remodeling. A systematic analysis will be conducted using bioinformatics and machine learning methods.

METHODS

Gene expression data of GSE60993, GSE61144, GSE66360 and GSE48060 from four datasets were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between MI samples and normal samples were screened by the limma package. Weighted gene co-expression network analysis (WGCNA) was employed to identify genetic modules associated with MI. Core genes in key modules were screened using LASSO regression and support vector machine recursive feature elimination (SVM-RFE). These genes were then subjected to functional enrichment analysis, including Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA). The CIBERSORT algorithm was utilized to evaluate immune cell infiltration patterns. Finally, potential therapeutic targets were explored through drug-gene interaction analysis using the DGIdb database.

RESULTS

After correcting for batch effects across datasets, we identified 687 differentially expressed genes (DEGs), including 405 upregulated and 282 downregulated genes. WGCNA analysis identified a highly correlated module with MI (turquoise module) containing 324 genes. Integrative machine learning (LASSO regression and SVM-RFE) and validation identified five key MI-associated genes: ANPEP, S100A9, MMP9, DAPK2, and FCAR. These genes were functionally enriched in inflammatory and immune-related pathways and correlated with immune cell infiltration, particularly neutrophils and macrophages. Notably, S100A9, FCAR, and MMP9 emerged as druggable targets.

CONCLUSION

The five hub genes identified in this study (ANPEP, S100A9, MMP9, DAPK2, and FCAR) significantly contribute to MI development by modulating inflammatory responses and immune regulation. Their strong association with MI pathogenesis highlights their potential as diagnostic markers and therapeutic targets, which may lead to new clinical applications for MI management.

摘要

目的

本研究旨在识别和验证参与心肌梗死(MI)进展的关键基因,并研究它们在炎症反应、免疫调节和心肌重塑中的作用。将使用生物信息学和机器学习方法进行系统分析。

方法

从基因表达综合数据库(GEO)收集了四个数据集GSE60993、GSE61144、GSE66360和GSE48060的基因表达数据。通过limma软件包筛选MI样本和正常样本之间的差异表达基因(DEG)。采用加权基因共表达网络分析(WGCNA)来识别与MI相关的基因模块。使用套索回归和支持向量机递归特征消除(SVM-RFE)筛选关键模块中的核心基因。然后对这些基因进行功能富集分析,包括京都基因与基因组百科全书(KEGG)、基因本体论(GO)和基因集富集分析(GSEA)。利用CIBERSORT算法评估免疫细胞浸润模式。最后,通过使用DGIdb数据库进行药物-基因相互作用分析来探索潜在的治疗靶点。

结果

在校正数据集间的批次效应后,我们识别出687个差异表达基因,包括405个上调基因和282个下调基因。WGCNA分析识别出一个与MI高度相关的模块(绿松石模块),包含324个基因。综合机器学习(套索回归和SVM-RFE)及验证确定了五个与MI相关的关键基因:氨肽酶N(ANPEP)、钙结合蛋白A9(S100A9)、基质金属蛋白酶9(MMP9)、死亡相关蛋白激酶2(DAPK2)和Fc片段受体(FCAR)。这些基因在炎症和免疫相关途径中功能富集,并与免疫细胞浸润相关,特别是中性粒细胞和巨噬细胞。值得注意的是,S100A9、FCAR和MMP9成为了可成药靶点。

结论

本研究中确定的五个枢纽基因(ANPEP、S100A9、MMP9、DAPK2和FCAR)通过调节炎症反应和免疫调节对MI的发展有显著贡献。它们与MI发病机制的密切关联突出了它们作为诊断标志物和治疗靶点的潜力,这可能为MI的管理带来新的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fff3/12234309/30d29ff4a0d8/fmolb-12-1607096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验