Barron Monica P, Wijeratne H R Sagara, Runnebohm Avery M, Caric Katelyn M, Mosley Amber L, Vilseck Jonah Z
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN.
Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN.
bioRxiv. 2025 Jul 4:2025.06.30.662390. doi: 10.1101/2025.06.30.662390.
Charge-changing perturbations are notoriously difficult to investigate with alchemical free energy calculations. The routine use of periodic boundary conditions and electrostatic approximations, such as particle-mesh Ewald (PME), may produce finite-size effect errors that become non-negligible as a perturbation changes a simulation cell's net charge away from zero. Two prevalent strategies exist to correct for these errors: the analytic correction (AC) and co-alchemical ion (CI) methods. Both correction schemes have been found to produce comparable relative free energy results for small molecule perturbations, but these methods have not been compared using λ-dynamics (λD) free energy calculations or for protein side chain mutations. Recently, we investigated relative folding and binding free energies ( ) of a series of EXOSC3 variants involved in a rare neurodegenerative disorder, including D132A, G135R, and G191D charge-change perturbations, with a simplified AC scheme in λD. In this study, these perturbations are reevaluated with the CI scheme for comparison with AC to identify the best correction strategy for λD. The collected AC- and CI-corrected show excellent agreement with a mean unsigned error of 0.4 kcal/mol. However, reduced sampling proficiency and increased difficulties of evaluating multisite perturbations with the CI method suggest that a simplified AC approach may be more generalizable for future λD calculations. Previously, the use of the CI approach with λD has been limited due to a lack of infrastructure available to users to simplify its more involved setup procedure. This study introduces an automated workflow for implementation of the CI approach with λD, laying the foundation for future comparisons between charge-change correction schemes. These studies facilitated analysis of the λD trajectories to identify structural changes within EXOSC3 and the RNA exosome complex that clearly rationalize the calculated for the D132A, G135R, G191C, and G191D EXOSC3 variants, providing insight into potential disease-causing mechanisms of EXOSC3 modifications.
电荷变化微扰极难通过炼金术自由能计算进行研究。周期性边界条件和静电近似(如粒子网格埃瓦尔德方法(PME))的常规使用可能会产生有限尺寸效应误差,当微扰使模拟单元的净电荷偏离零时,这种误差会变得不可忽略。存在两种普遍的策略来校正这些误差:解析校正(AC)方法和共炼金术离子(CI)方法。对于小分子微扰,已发现这两种校正方案能产生相当的相对自由能结果,但尚未使用λ动力学(λD)自由能计算或针对蛋白质侧链突变对这些方法进行比较。最近,我们使用λD中的简化AC方案研究了一系列与一种罕见神经退行性疾病相关的EXOSC3变体的相对折叠和结合自由能( ),包括D132A、G135R和G191D电荷变化微扰。在本研究中,使用CI方案对这些微扰进行重新评估,以便与AC进行比较,从而确定λD的最佳校正策略。收集到的经AC和CI校正的 显示出极佳的一致性,平均无符号误差为0.4千卡/摩尔。然而,CI方法的采样效率降低以及评估多位点微扰的难度增加表明,简化的AC方法可能更适用于未来的λD计算。此前,由于用户可用的基础设施不足,难以简化其更复杂的设置过程,因此CI方法与λD的结合使用受到限制。本研究引入了一种用于在λD中实施CI方法的自动化工作流程,为未来电荷变化校正方案之间的比较奠定了基础。这些研究有助于对λD轨迹进行分析,以识别EXOSC3和RNA外泌体复合物中的结构变化,这些变化清楚地解释了计算得到的D132A、G135R、G191C和G191D EXOSC3变体的 ,从而深入了解EXOSC3修饰的潜在致病机制。