Alkhatib Fathy, Allam Mohamed, Swarnakar Vikas, Alsadi Juman, Maalouf Maher
Department of Management Science and Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127781, United Arab Emirates.
Sci Rep. 2025 Jul 9;15(1):24742. doi: 10.1038/s41598-025-10226-4.
This study presents an applied integration of machine learning (ML) within the Process Monitoring for Quality (PMQ) framework to address persistent limitations in traditional quality control systems, particularly their inability to manage high-dimensional and real-time manufacturing data. This research enhances the PMQ framework with a novel Validate phase that introduces human oversight and interpretability into the ML decision-making loop. The modified framework has been implemented in a high-precision automotive component facility. The study relied on various ML algorithms, such as Decision Trees (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Logistic Regression (LR), Support Vector Machine (SVM), and Artificial Neural Networks (ANN), to classify and predict defects in engine valves during manufacturing processes. The findings highlighted that GBM and RF provided the best performance, achieving an F1 score of 0.98 and an AUC of 0.99. Feature importance analyzes identified seat height and undercut diameter as key predictors, reinforcing the relevance of interpretable ML in industrial quality management. Beyond technical accuracy, this work demonstrates how structured human-machine collaboration can foster trust in AI-driven quality control, offering a scalable blueprint for Quality 4.0 adoption. The findings contribute to academic literature and industrial practice by bridging conceptual frameworks and real-world implementation strategies for AI-enhanced quality assurance.
本研究提出了一种在质量过程监控(PMQ)框架内应用机器学习(ML)的方法,以解决传统质量控制系统中存在的长期局限性,特别是其无法管理高维实时制造数据的问题。本研究通过一个新颖的验证阶段增强了PMQ框架,该阶段将人工监督和可解释性引入到ML决策循环中。改进后的框架已在一家高精度汽车零部件工厂实施。该研究依靠各种ML算法,如决策树(DT)、随机森林(RF)、梯度提升机(GBM)、逻辑回归(LR)、支持向量机(SVM)和人工神经网络(ANN),对发动机气门制造过程中的缺陷进行分类和预测。研究结果表明,GBM和RF表现最佳,F1分数达到0.98,AUC为0.99。特征重要性分析确定座高和底切直径是关键预测因素,强化了可解释ML在工业质量管理中的相关性。除了技术准确性,这项工作还展示了结构化的人机协作如何促进对人工智能驱动的质量控制的信任,为采用质量4.0提供了一个可扩展的蓝图。这些发现通过将人工智能增强质量保证的概念框架与实际实施策略联系起来,为学术文献和工业实践做出了贡献。