Suppr超能文献

使用联邦学习在端边缘平台上对组织病理学图像进行细胞核分割和分类。

Nuclei segmentation and classification from histopathology images using federated learning for end-edge platform.

作者信息

Chowdhury Anjir Ahmed, Mahmud S M Hasan, Uddin Md Palash, Kadry Seifedine, Kim Jung-Yeon, Nam Yunyoung

机构信息

Department of Computer Science, University of Houston, Houston, Texas, United States of America.

Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, Bangladesh.

出版信息

PLoS One. 2025 Jul 10;20(7):e0322749. doi: 10.1371/journal.pone.0322749. eCollection 2025.

Abstract

Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis.

摘要

在组织学图像中进行准确的细胞核分割和分类对于癌症检测至关重要,但由于颜色不一致、边界模糊和细胞核重叠等问题,仍然具有挑战性。手动分割既耗时又费力,这凸显了对高效且可扩展的自动化解决方案的需求。本研究提出了一种深度学习框架,该框架将分割和分类相结合,以增强组织病理学图像中的细胞核评估。该框架采用两阶段方法:首先,SegNet模型分割细胞核区域,然后DenseNet121模型对分割后的实例进行分类。使用Hyperband方法进行超参数优化可提高两个模型的性能。为了保护数据隐私,该框架采用基于联邦平均的联邦学习方案,实现分散式训练而不暴露敏感数据。为了在边缘设备上进行高效部署,应用全整数量化以减少计算开销,同时保持准确性。实验结果表明,SegNet模型实现了91.4%的平均像素准确率(MPA)、63%的平均交并比(MIoU)和90.6%的频率加权交并比(FWIoU)。DenseNet121分类器实现了83%的准确率和67%的马修斯相关系数(MCC),超过了现有模型。量化后,两个模型的性能分别提高了1.3%和1.0%。所提出的框架展示了高精度和高效率,突出了其在癌症诊断实际临床部署中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d076/12244587/dc5f64cca8f7/pone.0322749.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验