Suppr超能文献

从人群生物样本库数据中提取和校准变异致病性的证据。

Extracting and calibrating evidence of variant pathogenicity from population biobank data.

作者信息

Bhat Vineel, Yu Tian, Brown Lara, Pejaver Vikas, Lebo Matthew, Harrison Steven, Cassa Christopher A

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Am J Hum Genet. 2025 Jul 4. doi: 10.1016/j.ajhg.2025.06.012.

Abstract

Genomic medicine requires a robust evidence base of variant phenotypic impacts, which remains incomplete even in extensively studied genes with monogenic disease associations. Here, we evaluated the broad potential of using population cohort data to identify evidence that can be used in variant assessment. Across 41 genes related to 18 clinically actionable monogenic phenotypes, we calculated variant-level odds ratios of disease enrichment using data from 469,803 UK Biobank participants. We found significant differences in odds ratio values between ClinVar-labeled pathogenic and benign variants in 11 phenotypes, spanning both common and rare disorders. To facilitate clinical translation, we calibrated the strength of evidence provided by variant-level odds ratios to align with American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) interpretation guidelines (PS4 criterion) and found that odds ratios may reach "moderate," "strong," or "very strong" evidence, varying by phenotype and gene. Overall, we found that 2.6% (N = 12,350) of participants harbor a rare variant of uncertain significance (VUS) with at least moderate evidence of pathogenicity-an indication of potentially unrecognized disease risk. Finally, by incorporating computational and functional data alongside population-based odds ratios, we identified variants that met the criteria for clinical reclassification. Notably, using this approach, we identified that 12.4% of rare VUSs in LDLR seen in participants meet diagnostic criteria to be classified as likely pathogenic, demonstrating its potential to scale the reclassification of VUSs.

摘要

基因组医学需要一个关于变异表型影响的强大证据库,即使在与单基因疾病相关且已被广泛研究的基因中,该证据库仍不完整。在此,我们评估了利用人群队列数据来识别可用于变异评估的证据的广泛潜力。在与18种临床可操作的单基因表型相关的41个基因中,我们使用来自469,803名英国生物银行参与者的数据计算了疾病富集的变异水平优势比。我们发现,在11种表型中,ClinVar标记的致病和良性变异之间的优势比值存在显著差异,涵盖常见和罕见疾病。为促进临床转化,我们根据美国医学遗传学与基因组学学会以及分子病理学协会(ACMG/AMP)的解释指南(PS4标准)校准了变异水平优势比提供的证据强度,发现优势比可能达到“中等”“强”或“非常强”的证据,因表型和基因而异。总体而言,我们发现2.6%(N = 12,350)的参与者携带意义未明的罕见变异(VUS),且具有至少中等程度的致病证据,这表明存在潜在未被认识的疾病风险。最后,通过将计算和功能数据与基于人群的优势比相结合,我们识别出符合临床重新分类标准的变异。值得注意的是,使用这种方法,我们发现参与者中LDLR基因的罕见VUS中有12.4%符合诊断标准,可被分类为可能致病,这表明其有潜力扩大VUS的重新分类规模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验