Suppr超能文献

基于机器学习构建的程序性细胞死亡相关模型揭示胰腺腺癌患者的预后及免疫浸润情况。

Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma patients.

作者信息

Wang Bing, Long Zhida, Zou Xun, Sun Zhengang, Xiao Yuanchu

机构信息

Department of Hepatobiliary Pancreatic and Splentic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei Province, China.

出版信息

Sci Rep. 2025 Jul 11;15(1):25156. doi: 10.1038/s41598-025-10847-9.

Abstract

Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy with limited effective prognostic biomarkers. In this study, 1,034 samples from TCGA-PAAD, GSE62452, GSE28735, GSE183795, and ICGC cohorts were systematically integrated to identify key programmed cell death-related genes (PCDRGs) associated with patient prognosis. Differential expression analysis and Univariate Cox regression analysis identified 17 candidate PCD-related genes significantly associated with overall survival. Using a comprehensive machine learning framework involving 117 algorithmic combinations under a Leave-one-out cross-validation (LOOCV) strategy, we identified the StepCox[both] + Ridge as the best algorithms composition to construct a prognostic model based on six PCDRGs, ITGA3, CDCP1, IL1RAP, CLU, PBK, and PLAU. The model was validated to have robust predictive performance. Risk scores were significantly correlated with clinical features, immune microenvironment characteristics, and chemotherapeutic sensitivity. High-risk patients exhibited worse prognosis and immunosuppressive infiltration patterns. Furthermore, consensus clustering identified two PAAD molecular subtypes with distinct PCDRGs expression patterns and survival outcomes. A nomogram integrating risk score and clinical variables exhibited strong prognostic accuracy for 1-, 3-, and 5-year survival prediction. In summary, we established and validated a PCD-related prognostic signature that effectively stratifies PAAD patients by clinical outcome, immune contexture, and therapeutic response, providing novel insights for personalized management strategies.

摘要

胰腺腺癌(PAAD)是一种具有高度致死性的恶性肿瘤,有效的预后生物标志物有限。在本研究中,我们系统整合了来自TCGA-PAAD、GSE62452、GSE28735、GSE183795和ICGC队列的1034个样本,以识别与患者预后相关的关键程序性细胞死亡相关基因(PCDRGs)。差异表达分析和单变量Cox回归分析确定了17个与总生存期显著相关的候选PCD相关基因。使用一个包含117种算法组合的综合机器学习框架,在留一法交叉验证(LOOCV)策略下,我们确定了StepCox[both]+Ridge作为最佳算法组合,以基于6个PCDRGs(ITGA3、CDCP1、IL1RAP、CLU、PBK和PLAU)构建预后模型。该模型经验证具有强大的预测性能。风险评分与临床特征、免疫微环境特征和化疗敏感性显著相关。高危患者预后较差,表现出免疫抑制浸润模式。此外,共识聚类确定了两种PAAD分子亚型,它们具有不同的PCDRGs表达模式和生存结果。一个整合了风险评分和临床变量的列线图在预测1年、3年和5年生存率方面表现出很强的预后准确性。总之,我们建立并验证了一个与PCD相关的预后特征,该特征可根据临床结果、免疫背景和治疗反应有效地对PAAD患者进行分层,为个性化管理策略提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验