Suppr超能文献

一种用于提取多模态特征的双分支ResNet-BiLSTM深度学习框架,应用于基于光电容积脉搏波的无袖带血压估计。

A Two-Branch ResNet-BiLSTM Deep Learning Framework for Extracting Multimodal Features Applied to PPG-Based Cuffless Blood Pressure Estimation.

作者信息

Liu Zenan, Qiao Minghong, Liu Yezi, Zhang Jing, He Ling

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

出版信息

Sensors (Basel). 2025 Jun 26;25(13):3975. doi: 10.3390/s25133975.

Abstract

Cardiovascular disease is a major health threat closely associated with blood pressure levels. While continuous monitoring is essential, traditional cuff-based devices are inconvenient for long-term use. Current methods often fail to balance deep learning capabilities with interpretability, limiting further accuracy improvements. To address this problem, we propose a novel two-branch deep learning framework combining Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (BiLSTM) for photoplethysmography (PPG)-based cuffless blood pressure estimation. The ResNet branch processes 60 features selected by Support Vector Machine-Recursive Feature Elimination (SVM-RFE) from manually extracted features, including our newly proposed trend features, while the BiLSTM branch processes complete PPG waveforms. Testing on 220 waveform segments from 218 patients in the MIMIC-IV dataset, our method achieves mean absolute errors of 3.47 mmHg and 2.81 mmHg, with standard deviations of 5.06 mmHg and 4.11 mmHg for systolic and diastolic blood pressure. This performance meets the Association for the Advancement of Medical Instrumentation (AAMI) standards and achieves an A rating according to British Hypertension Society (BHS) standards.

摘要

心血管疾病是一种与血压水平密切相关的重大健康威胁。虽然持续监测至关重要,但传统的基于袖带的设备长期使用起来不方便。当前的方法往往无法在深度学习能力和可解释性之间取得平衡,限制了进一步的精度提升。为了解决这个问题,我们提出了一种新颖的双分支深度学习框架,该框架结合了残差网络(ResNet)和双向长短期记忆网络(BiLSTM),用于基于光电容积脉搏波描记法(PPG)的无袖带血压估计。ResNet分支处理通过支持向量机-递归特征消除(SVM-RFE)从手动提取的特征中选择的60个特征,包括我们新提出的趋势特征,而BiLSTM分支处理完整的PPG波形。在MIMIC-IV数据集中对218名患者的220个波形段进行测试,我们的方法在收缩压和舒张压上分别实现了平均绝对误差3.47 mmHg和2.81 mmHg,标准差分别为5.06 mmHg和4.11 mmHg。这一性能符合美国医疗仪器促进协会(AAMI)标准,并根据英国高血压学会(BHS)标准获得了A级评级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f40c/12251622/565d806ec2e7/sensors-25-03975-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验