Suppr超能文献

布尔网络建模在首例无症状阿尔茨海默病小鼠模型中识别出认知恢复力。

Boolean Network Modeling Identifies Cognitive Resilience in the First Murine Model of Asymptomatic Alzheimer's Disease.

作者信息

Jati Suborno, Taheri Sahar, Kal Satadeepa, Sinha Subhash C, Head Brian P, Mahata Sushil K, Sahoo Debashis

机构信息

University of California San Diego, La Jolla, CA, USA.

Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.

出版信息

bioRxiv. 2025 Jun 13:2025.06.11.659207. doi: 10.1101/2025.06.11.659207.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder defined by amyloid beta plaques and neurofibrillary tangles (NFTs), yet approximately 20-30% of aged individuals exhibit these hallmark lesions without developing cognitive impairment-a clinically silent condition termed asymptomatic AD (AsymAD). The molecular basis of this cognitive resilience remains poorly understood due to a lack of mechanistic models. Here, we integrate systems-level Boolean network modeling with validation to define the transcriptomic logic of AsymAD and uncover a novel preclinical model. Using Boolean implication networks trained on large-scale human cortical RNA-seq datasets, we identified a robust and invariant AD gene signature that accurately stratifies disease states across independent datasets. Application of this signature to Chromogranin A-deficient PS19 mice (CgA-KO/PS19) revealed a unique resilience phenotype: male mice developed AD-like molecular and neuropathological profiles in the pre-frontal cortex yet retained intact learning and memory. Female CgA-KO/PS19 mice displayed even greater protection, including reduced Tau phosphorylation and preserved synaptic ultrastructure. These findings establish the first validated murine model of AsymAD and identify CgA as a modifiable node linking neuroendocrine signaling, Tauopathy, and cognitive preservation. This work provides a scalable platform to probe sex-specific resilience, uncover early-stage biomarkers, and accelerate preventive therapeutic development in AD.

摘要

阿尔茨海默病(AD)是一种由β-淀粉样蛋白斑块和神经原纤维缠结(NFTs)定义的进行性神经退行性疾病,然而,大约20%-30%的老年人表现出这些标志性病变却未出现认知障碍——这种临床无症状的情况被称为无症状AD(AsymAD)。由于缺乏机制模型,这种认知弹性的分子基础仍知之甚少。在这里,我们将系统水平的布尔网络建模与验证相结合,以定义AsymAD的转录组逻辑并发现一种新的临床前模型。通过在大规模人类皮质RNA测序数据集上训练的布尔蕴含网络,我们确定了一个强大且不变的AD基因特征,该特征能在独立数据集中准确地对疾病状态进行分层。将此特征应用于嗜铬粒蛋白A缺陷的PS19小鼠(CgA-KO/PS19),揭示了一种独特的弹性表型:雄性小鼠在前额叶皮质出现类似AD的分子和神经病理学特征,但学习和记忆保持完整。雌性CgA-KO/PS19小鼠表现出更强的保护作用,包括tau蛋白磷酸化减少和突触超微结构保留。这些发现建立了首个经过验证的AsymAD小鼠模型,并确定CgA是连接神经内分泌信号、tau蛋白病和认知保护的一个可调节节点。这项工作提供了一个可扩展的平台,用于探究性别特异性弹性、发现早期生物标志物以及加速AD预防性治疗的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4d6/12259141/dbd258ff3577/nihpp-2025.06.11.659207v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验