Suppr超能文献

由GPT-4视觉引导的自动放射治疗治疗计划

Automated radiotherapy treatment planning guided by GPT-4Vision.

作者信息

Liu Sheng, Pastor-Serrano Oscar, Chen Yizheng, Gopaulchan Matthew, Liang Weixing, Buyyounouski Mark, Pollom Erqi, Le Quynh-Thu, Gensheimer Michael, Dong Peng, Yang Yong, Zou James, Xing Lei

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America.

Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America.

出版信息

Phys Med Biol. 2025 Jul 24;70(15). doi: 10.1088/1361-6560/adf02c.

Abstract

. Radiotherapy treatment planning is a time-consuming and potentially subjective process that requires iterative adjustment of model parameters to balance multiple conflicting objectives. Recent advancements in frontier artificial intelligence (AI) models offer promising avenues for addressing the challenges in planning and clinical decision-making. This study introduces GPT-RadPlan, an automated treatment planning framework that integrates radiation oncology knowledge with the reasoning capabilities of large multi-modal models, such as GPT-4Vision (GPT-4 V) from OpenAI.. Via in-context learning, we incorporate clinical requirements and three approved clinical plans along with their optimization settings, enabling GPT-4 V to acquire treatment planning domain knowledge. The resulting GPT-RadPlan system is integrated into our in-house inverse treatment planning system through an application programming interface. For a given patient, GPT-RadPlan acts as both plan evaluator and planner, first assessing dose distributions and dose-volume histograms, and then providing 'textual feedback' on how to improve the plan to match the physician's requirements. In this manner, GPT-RadPlan iteratively refines the plan by adjusting planning parameters, such as weights and dose objectives, based on its suggestions.. The efficacy of the automated planning system is showcased across 17 prostate cancer and 13 head & neck cancer VMAT plans with prescribed doses of 70.2 Gy and 72 Gy, respectively, where we compared GPT-RadPlan results to clinical plans produced by human experts. In all cases, GPT-RadPlan either outperformed or matched the clinical plans, demonstrating superior target coverage and reducing organ-at-risk doses by 5 Gy on average (15% for prostate and 10%-15% for head & neck).. Consistently satisfying the the dose-volume objectives in the clinical protocol, GPT-RadPlan represents the first multimodal large language model agent that mimics the behaviors of human planners in radiation oncology clinics, achieving promising results in automating the treatment planning process without the need for additional training.

摘要

放射治疗计划是一个耗时且可能具有主观性的过程,需要反复调整模型参数以平衡多个相互冲突的目标。前沿人工智能(AI)模型的最新进展为应对计划制定和临床决策中的挑战提供了有前景的途径。本研究介绍了GPT-RadPlan,这是一个自动化治疗计划框架,它将放射肿瘤学知识与大型多模态模型(如OpenAI的GPT-4Vision(GPT-4 V))的推理能力相结合。通过上下文学习,我们纳入了临床要求以及三个获批的临床计划及其优化设置,使GPT-4 V能够获取治疗计划领域知识。由此产生的GPT-RadPlan系统通过应用程序编程接口集成到我们的内部逆向治疗计划系统中。对于给定患者,GPT-RadPlan既充当计划评估器又充当计划制定者,首先评估剂量分布和剂量体积直方图,然后就如何改进计划以符合医生要求提供“文本反馈”。通过这种方式,GPT-RadPlan根据其建议通过调整计划参数(如权重和剂量目标)来迭代优化计划。在分别规定剂量为70.2 Gy和72 Gy的17个前列腺癌和13个头颈癌容积调强放疗(VMAT)计划中展示了该自动化计划系统的功效,我们将GPT-RadPlan的结果与人类专家制定的临床计划进行了比较。在所有情况下,GPT-RadPlan要么优于要么与临床计划相当,显示出更好的靶区覆盖,并将危及器官剂量平均降低了5 Gy(前列腺癌为15%,头颈癌为10%-15%)。GPT-RadPlan始终满足临床方案中的剂量体积目标,它是第一个模仿放射肿瘤学诊所中人类计划者行为的多模态大语言模型智能体,在无需额外训练的情况下实现了自动化治疗计划过程,并取得了有前景的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验