Vafadar Asma, Alashti Shayan Khalili, Khazayel Saeed, Babadi Sepideh, Eghtesadi Melika, Younesi Mohammad, Savardashtaki Amir, Negahdaripour Manica
Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
J Transl Med. 2025 Jul 15;23(1):796. doi: 10.1186/s12967-025-06646-5.
Asthma is a chronic inflammatory airway disease characterized by variable degrees of inflammation and airway hyperresponsiveness. The current study used a bioinformatic meta-analysis to identify key target genes and miRNA biomarkers for early diagnostics, thereby suggesting possible therapeutic targets that could impact the management and treatment of asthma sufferers.
This study used microarray bioinformatic analysis to discover potential asthma biomarkers by analyzing four microarray datasets of asthma patients and normal groups, namely GSE64913, GSE41863, GSE41862, and GSE165934. Additionally, pathway analysis, gene ontology (GO), and a protein-protein interaction (PPI) network were performed to investigate crucial pathways related to possible biological processes. A meta-analysis of the datasets to identify differentially expressed genes (DEGs) and their hub genes, with their targeting microRNAs, was implemented using bioinformatics tools.
In this regard, the genes ,,,,,,, and were identified as the hub genes while considering the results of the present study. GO analysis of the DEGs revealed significant enrichment of genes involved in antigen presentation and recognition by T cells, along with pathways related to inflammation and metabolism. Finally, ,,,,,,,,, and presented considerable associations with most hub genes.
These genetic factors may serve as valuable biomarkers for understanding the etiology and progression of asthma.
哮喘是一种慢性炎症性气道疾病,其特征为不同程度的炎症和气道高反应性。本研究采用生物信息学荟萃分析来鉴定早期诊断的关键靶基因和miRNA生物标志物,从而提出可能影响哮喘患者管理和治疗的潜在治疗靶点。
本研究通过分析哮喘患者和正常组的四个微阵列数据集,即GSE64913、GSE41863、GSE41862和GSE165934,利用微阵列生物信息学分析来发现潜在的哮喘生物标志物。此外,进行了通路分析、基因本体论(GO)和蛋白质-蛋白质相互作用(PPI)网络分析,以研究与可能的生物学过程相关的关键通路。使用生物信息学工具对数据集进行荟萃分析,以鉴定差异表达基因(DEG)及其枢纽基因以及它们的靶向微RNA。
在这方面,考虑到本研究结果,基因、、、、和被鉴定为枢纽基因。对DEG的GO分析显示,参与T细胞抗原呈递和识别的基因以及与炎症和代谢相关的通路显著富集。最后,、、、、、、和与大多数枢纽基因呈现出显著关联。
这些遗传因素可能作为了解哮喘病因和进展的有价值的生物标志物。