Shahsavari Reza, Pitié Sylvain, Faraji Somayeh, Conway Lewis J, Pickard Chris J, Hashemifar S Javad, Shahidi Alireza, Frapper Gilles
Applied Quantum Chemistry Group, E4 team, IC2MP UMR 7285, Université de Poitiers - CNRS, 4, rue Michel Brunet TSA 51106-86073, Poitiers, France.
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Phys Chem Chem Phys. 2025 Jul 30;27(30):16142-16152. doi: 10.1039/d5cp02162f.
Predicting the (meta)stable crystal structures in a binary phase diagram under pressure is essential for enhancing our understanding of high-pressure materials. The gallium-sulfur system is especially intriguing because of the semiconductor materials present at atmospheric pressure, with the potential for new compositions to form under compression. In this article, we employed two distinct and powerful methodologies for crystal structure prediction from ambient pressure up to 100 GPa in the Ga-S system: evolutionary algorithms as implemented in the USPEX package, utilizing the accuracy of density functional theory (DFT) for precise electronic structure calculations, and random structure searching (AIRSS), leveraging ephemeral data-derived potentials (EDDP) to achieve high-speed exploration. Our crystal structure search not only reaffirms the existence of the known GaS and GaS phases but also reveals eleven novel phases emerging progressively as the pressure is increased from 0 to 100 GPa, demonstrating their dynamic stability across varying pressure regimes. Our calculations predict 6/ → 2/ → 3̄ and → 3 → 3̄ transitions in GaS and GaS, respectively. Among the eleven predicted phases, 2/ GaS and 2/ GaS persist to ambient pressure on decompression, which are dynamically stable. 2/ GaS is a layered material composed of 2D sheets of GaS and intercalated S dimers that exhibits electrical insulating properties. Upon compression, a pressure-induced polymerisation is observed in GaS. The S dimers couple to form a linear, infinite sulphur chain with 1 electron-2 center bonds. This electronic configuration, 7 electrons per -(S)- repeating unit, confers the electrical metallic properties of the high-pressure GaS phase.
预测二元相图在压力下的(亚)稳定晶体结构对于增进我们对高压材料的理解至关重要。镓 - 硫体系尤其引人关注,因为在常压下存在半导体材料,并且在压缩状态下有可能形成新的化合物。在本文中,我们采用了两种不同且强大的方法来预测Ga - S体系中从常压到100 GPa的晶体结构:一种是在USPEX软件包中实现的进化算法,利用密度泛函理论(DFT)的精度进行精确的电子结构计算;另一种是随机结构搜索(AIRSS),利用基于瞬时数据的势(EDDP)实现高速探索。我们的晶体结构搜索不仅再次确认了已知的GaS和Ga₂S相的存在,还揭示了随着压力从0增加到100 GPa逐渐出现的11个新相,证明了它们在不同压力范围内的动态稳定性。我们的计算预测了GaS和Ga₂S中分别存在6/m → 2/m → 3̄和m → 3 → 3̄转变。在预测的11个相中,2/m GaS和2/m Ga₂S在减压后能保持到常压,它们是动态稳定的。2/m GaS是一种层状材料,由二维的GaS片层和嵌入的S二聚体组成,具有电绝缘性能。在压缩过程中,观察到GaS中发生压力诱导的聚合反应。S二聚体耦合形成具有1个电子 - 2中心键的线性无限硫链。这种电子构型,即每个-(S)-重复单元有7个电子,赋予了高压Ga₂S相金属电性能。