Suppr超能文献

基于大语言模型的基因优先级排序的调查与改进策略

Survey and improvement strategies for gene prioritization with large language models.

作者信息

Neeley Matthew B, Qi Guantong, Wang Guanchu, Tang Ruixiang, Mao Dongxue, Liu Chaozhong, Pasupuleti Sasidhar, Yuan Bo, Xia Fan, Liu Pengfei, Liu Zhandong, Hu Xia

机构信息

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, United States.

Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, United States.

出版信息

Bioinform Adv. 2025 Jun 24;5(1):vbaf148. doi: 10.1093/bioadv/vbaf148. eCollection 2025.

Abstract

MOTIVATION

Rare diseases remain difficult to diagnose due to limited patient data and genetic diversity, with many cases remaining undiagnosed despite advances in variant prioritization tools. While large language models have shown promise in medical applications, their optimal application for trustworthy and accurate gene prioritization downstream of modern prioritization tools has not been systematically evaluated.

RESULTS

We benchmarked various language models for gene prioritization using multi-agent and Human Phenotype Ontology classification approaches to categorize patient cases by phenotype-based solvability levels. To address language model limitations in ranking large gene sets, we implemented a divide-and-conquer strategy with mini-batching and token limiting for improved efficiency. GPT-4 outperformed other language models across all patient datasets, demonstrating superior accuracy in ranking causal genes. Multi-agent and Human Phenotype Ontology classification approaches effectively distinguished between confidently-solved and challenging cases. However, we observed bias toward well-studied genes and input order sensitivity as notable language model limitations. Our divide-and-conquer strategy enhanced accuracy, overcoming positional and gene frequency biases in literature. This framework optimized the overall process for identifying disease-causal genes compared to baseline evaluation, better enabling targeted diagnostic and therapeutic interventions and streamlining diagnosis of rare genetic disorders.

AVAILABILITY AND IMPLEMENTATION

Software and additional material is available at: https://github.com/LiuzLab/GPT-Diagnosis.

摘要

动机

由于患者数据有限和基因多样性,罕见病仍然难以诊断,尽管变异体优先级排序工具有所进步,但许多病例仍未得到诊断。虽然大语言模型在医学应用中显示出了前景,但其在现代优先级排序工具下游进行可靠且准确的基因优先级排序的最佳应用尚未得到系统评估。

结果

我们使用多智能体和人类表型本体分类方法对各种语言模型进行基因优先级排序基准测试,以根据基于表型的可解决性水平对患者病例进行分类。为了解决语言模型在对大型基因集进行排名时的局限性,我们实施了一种分治策略,采用小批量和令牌限制来提高效率。在所有患者数据集中,GPT-4的表现优于其他语言模型,在对因果基因进行排名方面显示出更高的准确性。多智能体和人类表型本体分类方法有效地区分了确定性解决的病例和具有挑战性的病例。然而,我们观察到对研究充分的基因存在偏差以及输入顺序敏感性是显著的语言模型局限性。我们的分治策略提高了准确性,克服了文献中的位置和基因频率偏差。与基线评估相比,该框架优化了识别疾病因果基因的整体过程,更好地实现了有针对性的诊断和治疗干预,并简化了罕见遗传病的诊断。

可用性和实施

软件和其他材料可在以下网址获取:https://github.com/LiuzLab/GPT-Diagnosis。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76fa/12263109/cc2314e56f66/vbaf148f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验