Pirolli Nicholas H, Levy Daniel, Schledwitz Alyssa, Moura Natalia Sampaio, Solomon Talia J, Powsner Emily H, Nowak Raith, Mamczarz Zuzanna, Bridgeman Christopher J, Khan Sulayman, Reus Laura, Anne Nidhi, Bentley William E, Raufman Jean-Pierre, Jay Steven M
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
bioRxiv. 2025 Jun 25:2025.06.20.660770. doi: 10.1101/2025.06.20.660770.
Inflammatory bowel diseases (IBD) affect over 6 million people globally and current treatments achieve only 10-20% rates of durable disease remission. Bacterial extracellular vesicles (BEVs) from probiotic lactic acid bacteria (LAB) are a promising novel therapeutic with mechanisms holding potential to drive increased rates of durable disease remission, including immunomodulation and intestinal epithelial tissue repair. However, translation of these cell-secreted nanovesicles is limited by long standing biomanufacturing hurdles, especially low production yields due to low biogenesis rates from cells. Here, our goal was to identify a candidate probiotic LAB that produces BEVs effective in a preclinical mouse model of IBD, and then genetically engineer the LAB for at least 10-fold increased production yields of BEVs, thereby passing a critical production threshold. We identified as a candidate LAB producing BEVs effective in treating acute dextran sulfate sodium (DSS)-induced murine colitis, and with greater efficacy than BEVs from probiotic Nissle 1917. We then genetically engineered a hypervesiculating strain by inducible expression of a peptidoglycan-modifying enzyme, resulting in a 66-fold increase in BEV productivity. Finally, we confirmed hypervesiculating BEVs were therapeutically effective in the acute DSS mouse model of colitis and found these BEVs were superior in reducing mucosal tissue damage compared to live cells. These findings demonstrate that BEVs from genetically engineered hypervesiculating strain of are a promising preclinical therapeutic candidate for IBD that overcomes historical biomanufacturing limitations of BEV therapeutics.
炎症性肠病(IBD)在全球影响着超过600万人,目前的治疗方法仅能使10%-20%的患者实现持久的疾病缓解。来自益生菌乳酸菌(LAB)的细菌细胞外囊泡(BEV)是一种很有前景的新型疗法,其作用机制有可能提高持久疾病缓解率,包括免疫调节和肠道上皮组织修复。然而,这些细胞分泌的纳米囊泡的转化受到长期存在的生物制造障碍的限制,尤其是由于细胞生物发生率低导致产量低下。在这里,我们的目标是确定一种候选益生菌LAB,它能产生在IBD临床前小鼠模型中有效的BEV,然后对LAB进行基因工程改造,使BEV的产量至少提高10倍,从而突破关键的生产阈值。我们确定 为一种候选LAB,其产生的BEV在治疗急性硫酸葡聚糖钠(DSS)诱导的小鼠结肠炎方面有效,且比来自益生菌Nissle 1917的BEV具有更高的疗效。然后,我们通过诱导表达一种肽聚糖修饰酶对一种超囊泡化 菌株进行基因工程改造,使BEV的生产力提高了66倍。最后,我们证实超囊泡化 的BEV在急性DSS小鼠结肠炎模型中具有治疗效果,并发现这些BEV在减少粘膜组织损伤方面比活 细胞更具优势。这些发现表明,来自基因工程改造的超囊泡化 菌株的BEV是一种有前景的IBD临床前治疗候选物,它克服了BEV疗法在生物制造方面的历史局限性。