Suppr超能文献

ERSAtool:一个适用于教学的用户友好型R/Shiny综合转录组分析界面。

ERSAtool: A User-Friendly R/Shiny Comprehensive Transcriptomic Analysis Interface Suitable for Education.

作者信息

Taridalu Sujith, Sista Kameshwar Ayyappa Kumar, Suzuki Masako

出版信息

bioRxiv. 2025 Jun 24:2025.06.20.660710. doi: 10.1101/2025.06.20.660710.

Abstract

RNA sequencing (RNA-seq) has become an essential technology for assessing gene expression profiles in biomedical research. However, the coding complexity of RNA-seq data analysis remains a significant barrier for students and researchers without extensive bioinformatics expertise. We present the ducational NA- eq nalysis (ERSAtool), a comprehensive R/Shiny interface that provides an intuitive graphical visualization of the complete RNA-seq analysis workflow. The application is built on established Bioconductor packages and upholds high standards in analyses while significantly reducing the technical expertise required to conduct sophisticated transcriptomic analyses. ERSAtool supports various input formats, such as raw count matrices and STAR alignment outputs. It generates sample information metadata through direct integration with the Gene Expression Omnibus (GEO) provided by the National Center for Biotechnology Information (NCBI). The application guides users through normalization, data visualization, differential expression analysis, and functional interpretation using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA). All results can be compiled into comprehensive, downloadable reports that enhance reproducibility and knowledge sharing. The design includes targeted features that facilitate educational use, making it especially useful for teaching transcriptomics in undergraduate to graduate-level bioinformatics courses. By connecting command-line bioinformatics tools with accessible graphical interfaces, ERSAtool improves accessibility to advanced transcriptomic analysis capabilities, potentially accelerating discoveries across various biological fields. The source code for the ERSAtool package is available at https://github.com/SuzukiLabTAMU/ERSAtool and is released under the GNU General Public License v3.0 (GPL-3.0).

摘要

RNA测序(RNA-seq)已成为生物医学研究中评估基因表达谱的一项重要技术。然而,RNA-seq数据分析的编码复杂性对于没有丰富生物信息学专业知识的学生和研究人员来说仍然是一个重大障碍。我们展示了教育RNA-seq分析工具(ERSAtool),这是一个全面的R/Shiny界面,它为完整的RNA-seq分析工作流程提供直观的图形可视化。该应用程序基于已建立的Bioconductor软件包构建,在分析中坚持高标准,同时显著降低进行复杂转录组分析所需的技术专业知识。ERSAtool支持各种输入格式,如原始计数矩阵和STAR比对输出。它通过与美国国立生物技术信息中心(NCBI)提供的基因表达综合数据库(GEO)直接集成来生成样本信息元数据。该应用程序指导用户使用基因本体(GO)和基因集富集分析(GSEA)进行标准化、数据可视化、差异表达分析和功能解释。所有结果都可以汇编成全面的、可下载的报告,以提高可重复性和知识共享。该设计包括便于教育使用的针对性功能,使其在本科到研究生水平的生物信息学课程中教授转录组学特别有用。通过将命令行生物信息学工具与易于使用的图形界面连接起来,ERSAtool提高了对高级转录组分析功能的可及性,有可能加速各个生物学领域的发现。ERSAtool软件包的源代码可在https://github.com/SuzukiLabTAMU/ERSAtool获得,并根据GNU通用公共许可证v3.0(GPL-3.0)发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验