Fountain Adam J, Böhning Jan, McLaughlin Stephen H, Morgan Tomos E, Edelstein Paul H, Troll Mark, Lamers Meindert H, Bharat Tanmay A M, Luisi Ben F, Ramakrishnan Lalita
bioRxiv. 2025 Jun 24:2025.06.24.661325. doi: 10.1101/2025.06.24.661325.
Bedaquiline, an antitubercular drug that targets ATP-synthase, is a key component of a new oral drug regimen that has revolutionized the treatment of multi drug resistant tuberculosis. Clinical bedaquiline resistance in has rapidly emerged, primarily due to mutations in the transcriptional repressor, that result in upregulation of the Resistance-Nodulation-Division (RND) efflux pump MmpS5/MmpL5 (MmpS5L5). Here, to understand how MmpS5L5 effluxes bedaquiline, we determined the structure of the MmpS5L5 complex using cryo-electron microscopy, revealing a novel trimeric architecture distinct from the canonical tripartite RND efflux pumps of Gram-negative bacteria. Structure prediction modelling in conjunction with functional genetic analysis indicates that it uses a periplasmic coiled-coil tube to transport molecules across the cell wall. Structure-guided genetic approaches identify MmpL5 mutations that alter bedaquiline transport; these mutations converge on a region in MmpL5 located in the lower portion of the periplasmic cavity, proximal to the outer leaflet of the inner membrane, suggesting a route for bedaquiline entry into the pump. While currently known clinical resistance to bedaquiline is due to pump upregulation, our findings that several MmpL5 variants increase bedaquiline efflux may presage the emergence of additional modes of clinical resistance.
Resistance to bedaquiline, a cornerstone drug for treating multidrug-resistant tuberculosis, is rapidly emerging due to mutations that upregulate expression of the MmpS5L5 efflux pump. Here, we reveal the cryo-EM structure of this pump, showing a novel trimeric architecture and a unique α-helical coiled-coil tube for drug transport. Structure-guided genetic analysis identifies MmpL5 variants that further increase bedaquiline efflux, suggesting potential resistance mechanisms beyond pump upregulation.
贝达喹啉是一种靶向ATP合酶的抗结核药物,是一种新型口服药物方案的关键组成部分,该方案彻底改变了耐多药结核病的治疗方法。临床上贝达喹啉耐药性迅速出现,主要是由于转录阻遏物发生突变,导致耐药结节分化(RND)外排泵MmpS5/MmpL5(MmpS5L5)上调。在此,为了解MmpS5L5如何外排贝达喹啉,我们使用冷冻电子显微镜确定了MmpS5L5复合物的结构,揭示了一种不同于革兰氏阴性菌经典三方RND外排泵的新型三聚体结构。结合功能基因分析的结构预测模型表明,它使用周质卷曲螺旋管将分子转运穿过细胞壁。结构导向的基因方法鉴定出改变贝达喹啉转运的MmpL5突变;这些突变集中在MmpL5位于周质腔下部、靠近内膜外小叶的一个区域,提示贝达喹啉进入泵的途径。虽然目前已知的对贝达喹啉的临床耐药性是由于泵上调,但我们发现几个MmpL5变体增加贝达喹啉外排可能预示着其他临床耐药模式的出现。
由于上调MmpS5L5外排泵表达的突变,对治疗耐多药结核病的基石药物贝达喹啉的耐药性正在迅速出现。在此,我们揭示了该泵的冷冻电镜结构,显示出一种新型三聚体结构和用于药物转运的独特α螺旋卷曲螺旋管。结构导向的基因分析鉴定出进一步增加贝达喹啉外排的MmpL5变体,提示除泵上调之外的潜在耐药机制。