Shapiro Jared T, Michaud Nicole M, Crowder Nathan A
Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
J Physiol. 2025 Jul 16. doi: 10.1113/JP287265.
Optogenetic tools have been used to investigate neural circuits in mouse primary visual cortex (V1), where channelrhodopsin-mediated activation (photostimulation) of inhibitory interneuron subtypes expressing parvalbumin (Pvalb+), somatostatin (SOM+) or vasoactive intestinal peptide (VIP+) can alter the responses of excitatory pyramidal neurons. Some studies have mentioned rebound spiking after this photostimulation, but no systematic analysis of these post-inhibitory rebound effects has yet been performed. Here, we characterized optogenetically mediated rebound effects in pyramidal cells and interneurons following Pvalb+, SOM+ or VIP+ photostimulation in isoflurane anaesthetized mice and investigated whether V1 network features such as activity and connectivity can affect rebound magnitude. We found converging evidence that rebounds were largest when interneuron photostimulation was coupled with visual stimuli that strongly activate V1. Many directly photostimulated interneurons showed post-activation effects that differed from rebounds in polarity and timing. Finally, Pvalb+ photostimulation produced the largest rebounds. Our findings suggest that both cellular and network mechanisms contribute to rebound effects in mouse V1. KEY POINTS: To study cortical circuits, light-activated optogenetic proteins targeted to inhibitory interneurons are used to suppress excitatory pyramidal cells, but after the light is turned off pyramidal cells sometimes show excess spiking, which is called a post-inhibitory rebound. We investigated whether optogenetically mediated post-inhibitory rebounds are affected by local cortical network activity and connectivity in anaesthetized mouse visual cortex. We show that visual stimuli that strongly activate visual cortex increase the magnitude of both post-inhibitory rebounds in pyramidal cells and novel post-excitation effects in the directly optogenetically activated interneurons. Activating different interneuron subtypes, each with distinct connection patterns within the local network, elicits different rebound effects. The properties of optogenetically mediated rebound effects in cortex can provide insights into how excitation and inhibition are regulated during normal brain function.
光遗传学工具已被用于研究小鼠初级视觉皮层(V1)中的神经回路,在该区域,表达小白蛋白(Pvalb+)、生长抑素(SOM+)或血管活性肠肽(VIP+)的抑制性中间神经元亚型经通道视紫红质介导的激活(光刺激)可改变兴奋性锥体神经元的反应。一些研究提到了这种光刺激后的反弹放电,但尚未对这些抑制后反弹效应进行系统分析。在这里,我们对异氟烷麻醉小鼠中Pvalb+、SOM+或VIP+光刺激后锥体细胞和中间神经元中光遗传学介导的反弹效应进行了表征,并研究了V1网络特征(如活动和连接性)是否会影响反弹幅度。我们发现了一致的证据,即当中间神经元光刺激与强烈激活V1的视觉刺激相结合时,反弹最大。许多直接光刺激的中间神经元表现出的激活后效应在极性和时间上与反弹不同。最后,Pvalb+光刺激产生的反弹最大。我们的研究结果表明,细胞机制和网络机制都有助于小鼠V1中的反弹效应。要点:为了研究皮层回路,靶向抑制性中间神经元的光激活光遗传学蛋白被用于抑制兴奋性锥体细胞,但在光关闭后,锥体细胞有时会出现过度放电,这被称为抑制后反弹。我们研究了光遗传学介导的抑制后反弹是否受麻醉小鼠视觉皮层局部皮层网络活动和连接性的影响。我们表明,强烈激活视觉皮层的视觉刺激会增加锥体细胞中抑制后反弹的幅度以及直接光遗传学激活的中间神经元中新型兴奋后效应的幅度。激活不同的中间神经元亚型,每个亚型在局部网络中具有不同的连接模式,会引发不同的反弹效应。皮层中光遗传学介导的反弹效应的特性可以为正常脑功能期间兴奋和抑制如何调节提供见解。