Suppr超能文献

用于胰十二指肠切除术后出血预测的机器学习模型:一项国际多中心队列研究

Machine learning model for postpancreaticoduodenectomy haemorrhage prediction: an international multicentre cohort study.

作者信息

Zhang Zhe, Zhao Xueping, Shang Minjie, Xu Qiuran, Wang Xiaowei, Zhang Jianwei, Wang Chengfeng, Gu Zongting

机构信息

The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.

Department of Pharmacy, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, China.

出版信息

BMJ Open. 2025 Jul 16;15(7):e096147. doi: 10.1136/bmjopen-2024-096147.

Abstract

OBJECTIVES

To develop and validate a machine learning model for precise risk stratification of postpancreaticoduodenectomy haemorrhage (PPH), enabling early identification of high-risk patients to guide clinical intervention.

DESIGN

Retrospective international multicentre cohort study with model development and external validation.

SETTING

Training data from the American College of Surgeons-National Surgical Quality Improvement Program database (USA, 2014-2017) and external validation data from the National Cancer Center (China, 2014-2019).

PARTICIPANTS

3609 patients in the training cohort and 1347 in the validation cohort undergoing pancreaticoduodenectomy. Patients with missing data or non-relevant variables were excluded.

PRIMARY AND SECONDARY OUTCOME MEASURES

Primary outcome: clinically relevant PPH (International Study Group of Pancreatic Surgery grades B/C).

SECONDARY OUTCOMES

model discrimination (area under the curve (AUC)), calibration (Hosmer-Lemeshow test), clinical utility (decision curve analysis) and risk stratification performance.

RESULTS

The least absolute shrinkage and selection operator (Lasso)-gradient boosting machine model identified eight predictors: albumin, haematocrit (HCT), American Society of Anesthesiologists (ASA) class, operative time, vascular resection, sepsis, reoperation and pancreatic fistula. It achieved AUCs of 0.84 (95% CI 0.82 to 0.86) in training and 0.82 (95% CI 0.78 to 0.85) in validation, outperforming logistic regression and other machine learning models. Risk stratification into low-risk, medium-risk and high-risk groups showed strong discriminatory power (AUCs: 0.72-0.75). Decision curve analysis confirmed net clinical benefit, and SHapley Additive exPlanations values highlighted HCT and operative time as top contributors. The model was deployed as an interactive application for real-time risk assessment.

CONCLUSIONS

This novel machine learning model for PPH prediction integrates interpretable risk stratification and demonstrates robust performance across international cohorts. Its deployment as a clinical tool may facilitate proactive management of high-risk patients. Prospective validation is warranted prior to broad implementation.

摘要

目的

开发并验证一种用于胰十二指肠切除术后出血(PPH)精确风险分层的机器学习模型,以便早期识别高危患者,指导临床干预。

设计

采用回顾性国际多中心队列研究进行模型开发和外部验证。

设置

训练数据来自美国外科医师学会国家外科质量改进计划数据库(美国,2014 - 2017年),外部验证数据来自国家癌症中心(中国,2014 - 2019年)。

参与者

训练队列中有3609例接受胰十二指肠切除术的患者,验证队列中有1347例。排除数据缺失或变量不相关的患者。

主要和次要结局指标

主要结局:临床相关PPH(国际胰腺手术研究组B/C级)。

次要结局

模型辨别力(曲线下面积(AUC))、校准(Hosmer - Lemeshow检验)、临床效用(决策曲线分析)和风险分层性能。

结果

最小绝对收缩和选择算子(Lasso)-梯度提升机模型确定了8个预测因素:白蛋白、血细胞比容(HCT)、美国麻醉医师协会(ASA)分级、手术时间、血管切除、脓毒症、再次手术和胰瘘。该模型在训练中的AUC为0.84(95%CI 0.82至0.86),在验证中的AUC为0.82(95%CI 0.78至0.85),优于逻辑回归和其他机器学习模型。风险分层为低风险、中风险和高风险组显示出强大的辨别力(AUC:0.72 - 0.75)。决策曲线分析证实了净临床效益,SHapley加性解释值突出显示HCT和手术时间是主要贡献因素。该模型被部署为用于实时风险评估的交互式应用程序。

结论

这种用于PPH预测的新型机器学习模型整合了可解释的风险分层,并在国际队列中表现出强大的性能。将其作为临床工具进行部署可能有助于对高危患者进行积极管理。在广泛实施之前,有必要进行前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e7a/12278129/61c154189105/bmjopen-15-7-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验