Wang Ying, Zhu Menghe, Zhu Jianhao, Liu Lei, Ma Liwei, Wu Yongzhi, Lv Qingliang, Wang Lei
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138407. doi: 10.1016/j.jcis.2025.138407. Epub 2025 Jul 11.
Microporous polyethylene (PE) membranes are commonly used separators in lithium-sulfur (LiS) batteries. However, these membranes suffer from severe shrinkage at high temperatures and exhibit limited physical barrier capability against polysulfides, which leads to significant shuttle effects, resulting in capacity decay and safety hazards. In the present study, we report a facile strategy to construct a coral-like CaCO composite functional layer on the PE separator surface using a polydopamine (PDA)-assisted in situ liquid-phase growth technique. This endows the separator with excellent mechanical properties, outstanding thermal shrinkage resistance, and exceptional flame retardancy. The multifunctional composite layer enables the synergistic suppression of polysulfides. The phenolic hydroxyl/amino functional groups in PDA provide chemical anchoring, effectively trapping polysulfides. Simultaneously, the coral-like porous structure of CaCO establishes a physical barrier, restricting polysulfide migration. Furthermore, owing to the nitrogen-containing flame retardancy of PDA and the barrier effect of CaCO, the composite layer demonstrates excellent flame retardancy. This composite layer enhances electrolyte wettability and promotes uniform lithium-ion transport, thereby suppressing lithium dendrite formation. These advantages enable LiS batteries employing the CaCO@PDA@PE composite separator to demonstrate significantly improved electrochemical performance. This approach results in high specific capacity, excellent rate capability, and extended cycle life. This study provides a cost-effective novel strategy of "chemical anchoring-physical barrier" synergy for developing LiS battery separators with high safety and superior electrochemical performance.
微孔聚乙烯(PE)膜是锂硫(LiS)电池中常用的隔膜。然而,这些隔膜在高温下会严重收缩,并且对多硫化物的物理阻隔能力有限,这会导致严重的穿梭效应,从而导致容量衰减和安全隐患。在本研究中,我们报道了一种简便的策略,即使用聚多巴胺(PDA)辅助的原位液相生长技术在PE隔膜表面构建珊瑚状CaCO复合功能层。这赋予了隔膜优异的机械性能、出色的抗热收缩性和卓越的阻燃性。多功能复合层能够协同抑制多硫化物。PDA中的酚羟基/氨基官能团提供化学锚固作用,有效地捕获多硫化物。同时,CaCO的珊瑚状多孔结构建立了物理屏障,限制了多硫化物的迁移。此外,由于PDA的含氮阻燃性和CaCO的阻隔作用,复合层表现出优异的阻燃性。该复合层增强了电解质润湿性并促进了锂离子的均匀传输,从而抑制了锂枝晶的形成。这些优点使得采用CaCO@PDA@PE复合隔膜的LiS电池表现出显著改善的电化学性能。这种方法实现了高比容量、优异的倍率性能和延长的循环寿命。本研究为开发具有高安全性和卓越电化学性能的LiS电池隔膜提供了一种具有成本效益的“化学锚固-物理屏障”协同作用的新策略。