González-Parra Gilberto, Pérez Cristina-Luisovna, Llamazares Marcos, Villanueva Rafael-J, Villegas-Villanueva Jesus
Department of Mathematics, New Mexico Tech, New Mexico 87801, USA.
Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain.
Math Biosci Eng. 2025 May 27;22(7):1680-1721. doi: 10.3934/mbe.2025062.
We propose several spatial-temporal epidemiological mathematical models to study their suitability to approximate the dynamics of the early phase of the COVID-19 pandemic in Chile. The model considers the population density of susceptible, infected, and recovered individuals. The models are based on a system of partial differential equations. The first model considers a space-invariant transmission rate, and the second modeling approach is based on different space-variant transmission rates. The third modeling approach, which is more complex, uses a transmission rate that varies with space and time. One main aim of this study is to present the advantages and drawbacks of the mathematical approaches proposed to describe the COVID-19 pandemic in Chile. We show that the calibration of the models is challenging. The results of the model's calibration suggest that the spread of SARS-CoV-2 in the regions of Chile was different. Moreover, this study provides additional insight since few studies have explored similar mathematical modeling approaches with real-world data.
我们提出了几个时空流行病学数学模型,以研究它们对智利COVID-19大流行早期阶段动态的近似适用性。该模型考虑了易感、感染和康复个体的人口密度。这些模型基于一个偏微分方程组。第一个模型考虑一个空间不变的传播率,第二种建模方法基于不同的空间可变传播率。第三种建模方法更复杂,使用一个随空间和时间变化的传播率。本研究的一个主要目的是展示所提出的用于描述智利COVID-19大流行的数学方法的优缺点。我们表明,模型的校准具有挑战性。模型校准的结果表明,SARS-CoV-2在智利各地区的传播情况不同。此外,由于很少有研究用实际数据探索类似的数学建模方法,本研究提供了更多的见解。