Rayevsky Alexey, Bulgakov Eliah, Stykhylias Mariia, Ozheredov Sergey, Spivak Svetlana, Blume Yaroslav
Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Kyiv, Ukraine.
CADD Department, Enamine Ltd., Kyiv, Ukraine.
Mol Inform. 2025 Jul;44(7):e202500025. doi: 10.1002/minf.70004.
Despite the abundance of systematically collected experimental data and facts, the multistep process of autophagy still contains many dark spots. One concerns the background selectivity of interactions between certain autophagy-related protein (ATG8) isoforms and their receptors/adaptors in plants during the autophagy process. By regulating phagophore initiation, expansion, and maturation, these proteins control the assembly of numerous autophagy proteins at this key docking platform. Bioinformatics analysis of human, yeast, and plant ATG8 amino acid sequences allow us to build a sequence tree of plant ATG8s, divided in three groups. We perform a structural study aimed at revealing some of the underlying reasons for the differences in the selectivity of ATG8 isoforms. A series of molecular dynamics (MD) simulations are performed to explain the stage-dependent functionality of ATG8. The conserved secondary structure and folding across all ATG8 proteins, resulting in nearly identical protein-protein interaction interfaces, makes this study particularly important and interesting. Recognizing the dual role of the LC3 interacting region (LIR) in autophagosome biogenesis and recruitment of the anchored selective autophagy receptor (SAR), we perform a mobility domain analysis. To this end, the amino acid sequence associated with the LIR docking site (LDS) interface is localized and subjected to root mean square deviation (RMSD)-based clustering analysis. Starting from Atg8-targeted protein-peptide docking, we attempt to identify conformational changes in the contact region of the corresponding adaptors and receptors involved in the common biogenesis events in autophagy. For the molecular dynamics, we select three representatives, sharing common patterns with other members of the groups. The resulting ATG8-peptide complexes display a significant preference for binding specific partners by different ATG8 isotypes.
尽管有大量系统收集的实验数据和事实,但自噬的多步骤过程仍存在许多盲点。其中一个问题涉及植物自噬过程中某些自噬相关蛋白(ATG8)亚型与其受体/衔接蛋白之间相互作用的背景选择性。通过调节吞噬泡的起始、扩展和成熟,这些蛋白质在这个关键的对接平台上控制众多自噬蛋白的组装。对人类、酵母和植物ATG8氨基酸序列的生物信息学分析使我们能够构建植物ATG8的序列树,分为三组。我们进行了一项结构研究,旨在揭示ATG8亚型选择性差异的一些潜在原因。进行了一系列分子动力学(MD)模拟来解释ATG8的阶段依赖性功能。所有ATG8蛋白中保守的二级结构和折叠导致几乎相同的蛋白质-蛋白质相互作用界面,使得这项研究特别重要且有趣。认识到LC3相互作用区域(LIR)在自噬体生物发生和锚定选择性自噬受体(SAR)募集中的双重作用,我们进行了迁移域分析。为此,定位与LIR对接位点(LDS)界面相关的氨基酸序列,并进行基于均方根偏差(RMSD)的聚类分析。从靶向Atg8的蛋白质-肽对接开始,我们试图识别参与自噬中常见生物发生事件的相应衔接蛋白和受体接触区域的构象变化。对于分子动力学,我们选择了三个代表,它们与组内其他成员具有共同模式。所得的ATG8-肽复合物显示出不同ATG8亚型对结合特定伙伴有显著偏好。