Sieradzka Małgorzata, Jerzak Wojciech, Mlonka-Mędrala Agata, Marszałek Anna, Dudziak Mariusz, Kalemba-Rec Izabela, Błoniarz Aleksandra, Reinmöller Markus, Kopia Agnieszka, Nowak Wojciech, Magdziarz Aneta
AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland.
Silesian University of Technology, Konarskiego St. 18, 44-100, Gliwice, Poland.
Sci Rep. 2025 Jul 19;15(1):26195. doi: 10.1038/s41598-025-11580-z.
Organic waste from the food industry can be thermochemically converted into valuable products, supporting the circular economy and reducing environmental and socio-economic impacts. This study explores the valorisation of food industry residues, such as rapeseed cake, maize cobs, and walnut shells, through slow pyrolysis at 600 °C under an inert atmosphere. The studied feedstocks were lignocellulosic materials with approximately 45% carbon content, but had different fibre contents, which subsequently affected the properties of the biochars. The highest char yield was observed for rapeseed cake (26%), followed by walnut shells (24%) and maize cobs (22%). Elemental analysis revealed that the carbon content in the biochars of maize cobs and walnut shells exceeded 80%, with a particularly significant surface area (356 m/g) noted for the walnut shells, and very low for the rapeseed cake and maize cobs, respectively. Only after the chars underwent physical (steam activation at 850 °C) and chemical activation (using HPO and ZnCl), resulting in a substantial increase in surface area, exceeding 300 m/g for rapeseed cake and maize cobs and c.a. 550 m/g for walnut shell biochar. These biochars effectively removed organic (phenol) and inorganic (Pb) pollutants from aqueous solutions (100% removal of Pb and 82% removal of phenol for biochar of walnut shells) and additionally did not exhibit acute toxicity in Lemna minor tests, confirming their environmental safety. The work aligns with SDG 6 (Clean Water and Sanitation) by enabling low-cost pollutant removal, SDG 12 (Responsible Consumption and Production) by upcycling food waste, SDG 13 (Climate Action) through carbon sequestration and emissions mitigation, and SDG 15 (Life on Land) by offering materials that improve soil health and support circular economy principles. This research demonstrates how engineered biochar can serve as a multipurpose environmental tool, directly supporting global sustainability targets.
食品工业产生的有机废物可以通过热化学方法转化为有价值的产品,这有助于循环经济,并减少对环境和社会经济的影响。本研究探索了在惰性气氛下于600°C进行慢速热解,以实现对油菜籽饼、玉米芯和核桃壳等食品工业残渣的增值利用。所研究的原料均为木质纤维素材料,碳含量约为45%,但纤维含量不同,这随后影响了生物炭的性质。观察到油菜籽饼的炭产率最高(26%),其次是核桃壳(24%)和玉米芯(22%)。元素分析表明,玉米芯和核桃壳生物炭中的碳含量超过80%,核桃壳的比表面积尤为显著(356 m²/g),而油菜籽饼和玉米芯的比表面积则非常低。只有在炭经过物理活化(850°C蒸汽活化)和化学活化(使用H₃PO₄和ZnCl₂)后,比表面积才大幅增加,油菜籽饼和玉米芯超过300 m²/g,核桃壳生物炭约为550 m²/g。这些生物炭能有效去除水溶液中的有机污染物(苯酚)和无机污染物(铅)(核桃壳生物炭对铅的去除率为100%,对苯酚的去除率为82%),此外在浮萍试验中未表现出急性毒性,证实了它们的环境安全性。这项工作通过实现低成本的污染物去除,符合可持续发展目标6(清洁水和卫生设施);通过将食物垃圾升级回收,符合可持续发展目标12(负责任的消费和生产);通过碳固存和减排,符合可持续发展目标13(气候行动);通过提供改善土壤健康并支持循环经济原则的材料,符合可持续发展目标15(陆地生物)。本研究证明了工程生物炭如何能够作为一种多功能的环境工具,直接支持全球可持续发展目标。