Suppr超能文献

一种用于语义分割的上下文感知多类损失函数,重点关注复杂区域和类别不平衡问题。

A context aware multiclass loss function for semantic segmentation with a focus on intricate areas and class imbalances.

作者信息

Ghanaei Zahra, Rouhani Modjtaba

机构信息

Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

Sci Rep. 2025 Jul 19;15(1):26279. doi: 10.1038/s41598-025-08234-5.

Abstract

Image segmentation models play an important role in many machine vision systems by providing a more interpretable representation of images to computers. The accuracy of these models is vital, as it can directly impact the overall performance of the systems. Therefore, making any progress in this component would be very critical. To improve this aspect, we have developed a new loss function, named SPix-WCE, to boost the performance of deep neural networks in image segmentation tasks. Our primary goal is to address imbalances in image datasets by identifying complicated areas in the images and bringing them more into focus during the model training process. This was achieved by utilizing the SLIC algorithm and analyzing each superpixel to detect key regions in images, followed by implementing a weighting scheme to control the influence of each area in the loss calculation. Subsequently, we carried out a series of experiments to validate our approach. These experiments involved three different models and four multiclass datasets with various degrees of imbalance. The models were trained and tested using the proposed loss function as well as other commonly used ones. The outcomes of our experiments demonstrate that using SPix-based losses led to better results in terms of IoU, F1-Score, and pixel accuracy metrics compared to other methods.

摘要

图像分割模型通过向计算机提供更具可解释性的图像表示,在许多机器视觉系统中发挥着重要作用。这些模型的准确性至关重要,因为它会直接影响系统的整体性能。因此,在这个组件上取得任何进展都非常关键。为了改进这一方面,我们开发了一种新的损失函数,名为SPix-WCE,以提高深度神经网络在图像分割任务中的性能。我们的主要目标是通过识别图像中的复杂区域并在模型训练过程中更关注这些区域,来解决图像数据集的不平衡问题。这是通过利用SLIC算法并分析每个超像素以检测图像中的关键区域,然后实施加权方案来控制损失计算中每个区域的影响来实现的。随后,我们进行了一系列实验来验证我们的方法。这些实验涉及三种不同的模型和四个具有不同程度不平衡的多类数据集。使用所提出的损失函数以及其他常用的损失函数对模型进行训练和测试。我们的实验结果表明,与其他方法相比,使用基于SPix的损失在交并比(IoU)、F1分数和像素准确率指标方面产生了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3536/12276218/4c369b3c419d/41598_2025_8234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验