Li Yunfei, Li Jiawei, Wang Yiren, Wang Youhua, Huang Delong, Wen Zhongjian, Hu Yiheng, Lin Sheng, Zhou Ping, Pang Haowen
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
School of Nursing, Southwest Medical University, Luzhou, China.
J Thorac Dis. 2025 Jun 30;17(6):3749-3761. doi: 10.21037/jtd-2024-2003. Epub 2025 Jun 26.
Non-small cell lung cancer (NSCLC) represents a significant portion of lung cancer cases globally, with kirsten rats arcomaviral oncogene homolog (KRAS) mutations being a critical factor in its pathogenesis. Predicting KRAS mutation status is crucial for guiding targeted therapies and improving patient outcomes. This study aimed to develop and validate a differential evolution optimized artificial neural network (DE-ANN) model that integrates positron emission tomography/computed tomography (PET/CT) radiomics and genomics data for predicting KRAS mutation status in NSCLC patients, showcasing the potential of multi-omics integration in precision oncology.
The study utilized PET/CT radiomics features and genomics data from public databases using least absolute shrinkage and selection operator (LASSO) regression and support vector machine-recursive feature elimination (SVM-RFE) to identify key predictive features. The DE-ANN model was optimized using differential evolution algorithms and validated internally using Bootstrap resampling to assess its predictive performance.
The DE-ANN model demonstrated superior predictive accuracy with an area under the curve (AUC) of 0.909 [95% confidence interval (CI): 0.882-0.937], outperforming traditional artificial neural network (ANN) models (AUC =0.819, 95% CI: 0.778-0.860). Key features identified included significant radiomics signatures and gene markers, with the model showing enhanced convergence rates and robust internal validation outcomes. The model's calibration and decision curve analyses further confirmed its clinical applicability and potential for improving personalized treatment strategies in NSCLC.
The DE-ANN model represents a significant advancement in the predictive modeling of KRAS mutation status in NSCLC, leveraging the synergy between radiomics and genomic data. Its high predictive accuracy and methodological robustness highlight the model's potential as a tool in precision oncology, warranting further external validation and exploration in other cancer types.
非小细胞肺癌(NSCLC)在全球肺癌病例中占很大比例,其中 Kirsten 大鼠肉瘤病毒癌基因同源物(KRAS)突变是其发病机制中的关键因素。预测 KRAS 突变状态对于指导靶向治疗和改善患者预后至关重要。本研究旨在开发并验证一种差分进化优化人工神经网络(DE-ANN)模型,该模型整合正电子发射断层扫描/计算机断层扫描(PET/CT)影像组学和基因组学数据,用于预测 NSCLC 患者的 KRAS 突变状态,展示多组学整合在精准肿瘤学中的潜力。
该研究利用公开数据库中的 PET/CT 影像组学特征和基因组学数据,采用最小绝对收缩和选择算子(LASSO)回归以及支持向量机递归特征消除(SVM-RFE)来识别关键预测特征。使用差分进化算法对 DE-ANN 模型进行优化,并通过自助重采样进行内部验证,以评估其预测性能。
DE-ANN 模型显示出卓越的预测准确性,曲线下面积(AUC)为 0.909 [95%置信区间(CI):0.882 - 0.937],优于传统人工神经网络(ANN)模型(AUC = 0.819,95% CI:0.778 - 0.860)。识别出的关键特征包括显著的影像组学特征和基因标志物,该模型显示出更高的收敛率和稳健的内部验证结果。模型的校准和决策曲线分析进一步证实了其临床适用性以及在改善 NSCLC 个性化治疗策略方面的潜力。
DE-ANN 模型代表了 NSCLC 中 KRAS 突变状态预测建模的重大进展,利用了影像组学和基因组数据之间的协同作用。其高预测准确性和方法稳健性突出了该模型作为精准肿瘤学工具的潜力,值得在其他癌症类型中进行进一步的外部验证和探索。