She Xiao, Zhao Xiao, Yang Haiyan, Cui Xiaoguang
Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi, China.
Department of Rheumatology and Immunology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi, China.
PLoS One. 2025 Jul 21;20(7):e0328701. doi: 10.1371/journal.pone.0328701. eCollection 2025.
Despite advances in intensive care, sepsis remains a leading cause of mortality in intensive care unit (ICU) patients, especially middle-aged and elderly individuals. Given the limitations of conventional scoring systems and the interpretability challenges of machine learning models, this study aims to develop and temporally validate a nomogram for predicting 28-day ICU mortality in middle-aged and elderly sepsis patients via the eICU database (2014--2015), providing a clinically practical prediction tool.
This retrospective study included 13,717 sepsis patients aged ≥45 years. The cohort was temporally divided into training (n = 6,397, 2014) and validation (n = 7,320, 2015) sets. Variable selection was performed via random forest importance ranking and LASSO regression. A nomogram was developed on the basis of multivariable logistic regression analysis.
The 28-day ICU mortality rates were 9.08% and 9.49% in the training and validation cohorts, respectively. The final nomogram incorporated 11 independent predictors: red cell distribution width (RDW), SOFA score, lactate, pH, 24-hour urine output, platelet count, total protein, temperature, heart rate, GCS score, and white blood cell (WBC) count. The model showed good discrimination in both the training (AUC: 0.805) and validation (AUC: 0.756) cohorts. The calibration curves demonstrated good agreement between the predicted and observed probabilities.
We developed and temporally validated a nomogram with good predictive performance for 28-day ICU mortality in middle-aged and elderly sepsis patients, providing a practical tool for risk stratification and clinical decision-making.
尽管重症监护取得了进展,但脓毒症仍是重症监护病房(ICU)患者,尤其是中老年患者死亡的主要原因。鉴于传统评分系统的局限性以及机器学习模型的可解释性挑战,本研究旨在通过eICU数据库(2014 - 2015年)开发并进行时间验证一个列线图,以预测中老年脓毒症患者28天的ICU死亡率,提供一种临床实用的预测工具。
这项回顾性研究纳入了13717例年龄≥45岁的脓毒症患者。该队列在时间上分为训练集(n = 6397,2014年)和验证集(n = 7320,2015年)。通过随机森林重要性排名和LASSO回归进行变量选择。基于多变量逻辑回归分析开发了一个列线图。
训练队列和验证队列中28天的ICU死亡率分别为9.08%和9.49%。最终的列线图纳入了11个独立预测因素:红细胞分布宽度(RDW)、序贯器官衰竭评估(SOFA)评分、乳酸、pH值、24小时尿量、血小板计数、总蛋白、体温、心率、格拉斯哥昏迷量表(GCS)评分和白细胞(WBC)计数。该模型在训练队列(AUC:0.805)和验证队列(AUC:0.756)中均显示出良好的区分度。校准曲线显示预测概率与观察概率之间具有良好的一致性。
我们开发并进行了时间验证一个列线图,对中老年脓毒症患者28天的ICU死亡率具有良好的预测性能,为风险分层和临床决策提供了一个实用工具。