Zhang Chao, Li Guojing, Wu Xiaopei, Gao Xiangping
IEEE Trans Neural Syst Rehabil Eng. 2025;33:2847-2857. doi: 10.1109/TNSRE.2025.3591616.
Brain-Computer Interface (BCI) that integrate Motor Imagery (MI) with Steady-State Visual Evoked Potentials (SSVEP) or Overt Spatial Attention (OSA) have demonstrated superior performance compared to MI only BCI. Nonetheless, the exploration of BCI that combine MI with visual tasks remains limited, and the synchronization between MI and visual tasks is often weak. To address this gap, our study introduces a novel BCI paradigm that combines MI with two visual tasks: SSVEP and OSA. In this paradigm, dynamic images depicting left and right arm movements flash at distinct frequencies, serving as visual stimuli positioned on both sides of the screen. Four classification methods are used for testing. The MI+SSVEP+OSA paradigm achieves higher average accuracy than the MI, MI+SSVEP, and MI+OSA paradigms. This validates the effectiveness of our novel paradigm and confirms the feasibility of simultaneously integrating MI with two visual stimuli. Moreover, we observe that the integration of SSVEP offers significant improvements, especially for participants who exhibit limited performance in the MI only paradigm. Additionally, our results indicate comparable performance between the MI+SSVEP and MI+OSA paradigms. Overall, this study offers valuable insights that can guide future research in hybrid BCI development, paving the way for more efficient and user-friendly BCI.
将运动想象(MI)与稳态视觉诱发电位(SSVEP)或 overt 空间注意(OSA)相结合的脑机接口(BCI)已显示出比仅基于 MI 的 BCI 更优越的性能。尽管如此,将 MI 与视觉任务相结合的 BCI 的探索仍然有限,并且 MI 与视觉任务之间的同步通常较弱。为了弥补这一差距,我们的研究引入了一种新颖的 BCI 范式,该范式将 MI 与两个视觉任务相结合:SSVEP 和 OSA。在这种范式中,描绘左臂和右臂运动的动态图像以不同频率闪烁,作为位于屏幕两侧的视觉刺激。使用四种分类方法进行测试。MI+SSVEP+OSA 范式比 MI、MI+SSVEP 和 MI+OSA 范式实现了更高的平均准确率。这验证了我们新颖范式的有效性,并证实了同时将 MI 与两种视觉刺激相结合的可行性。此外,我们观察到 SSVEP 的整合带来了显著改善,特别是对于在仅基于 MI 的范式中表现有限的参与者。此外,我们的结果表明 MI+SSVEP 和 MI+OSA 范式之间的性能相当。总体而言,本研究提供了有价值的见解,可指导混合 BCI 开发的未来研究,为更高效、用户友好的 BCI 铺平道路。