Suppr超能文献

侵袭性真菌病患者的分类:迈向统一的病例定义?

Classifying patients with invasive fungal disease: towards a unified case definition?

作者信息

Ergün Mehmet, Brüggemann Roger J M, Alanio Alexandre, Bentvelsen Robbert G, van Dijk Karin, Ergün Meltem, Lagrou Katrien, Schouten Jeroen A, Wauters Joost, White P Lewis, Verweij Paul E

机构信息

Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, The Netherlands.

Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

J Antimicrob Chemother. 2025 Sep 3;80(9):2337-2343. doi: 10.1093/jac/dkaf261.

Abstract

Management of invasive fungal disease (IFD) is increasingly challenging due to recognition of novel at-risk groups, emergence of new fungal pathogens and antifungal drug resistance. Together with the availability of new diagnostic tests and treatment modalities, robust and broadly applicable IFD case definitions are critical to support research. However, the ability to classify IFDs with the current definitions has decreased, prompting the development of new case definitions. Furthermore, current case definitions rely on a single positive test as mycological evidence, while not considering discordant evidence. We propose to explore the development of a machine learning (ML)-based IFD classification model, which uses algorithms to automatically 'learn' from observed data to consistently and accurately classify IFDs. Although developing and validating an ML-based IFD classification model is a significant undertaking, such an endeavour should be considered a worthwhile investment by the mycology community to standardize and reduce the ambiguity in the diagnosis of non-proven IFD.

摘要

由于新型高危群体的出现、新真菌病原体的出现以及抗真菌药物耐药性,侵袭性真菌病(IFD)的管理面临着越来越大的挑战。随着新诊断测试和治疗方式的出现,强大且广泛适用的IFD病例定义对于支持研究至关重要。然而,使用当前定义对IFD进行分类的能力有所下降,这促使了新病例定义的制定。此外,当前的病例定义依赖单一阳性测试作为真菌学证据,而未考虑不一致的证据。我们建议探索开发一种基于机器学习(ML)的IFD分类模型,该模型使用算法从观察到的数据中自动“学习”,以一致且准确地对IFD进行分类。尽管开发和验证基于ML的IFD分类模型是一项重大任务,但真菌学界应将这种努力视为一项有价值的投资,以规范并减少未确诊IFD诊断中的模糊性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b45/12404735/638c8377f571/dkaf261f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验