Suppr超能文献

用于多时间点动脉期对比增强磁共振成像分析的人工智能,以预测肝细胞癌经动脉化疗栓塞后的预后

Artificial intelligence for multi-time-point arterial phase contrast-enhanced MRI profiling to predict prognosis after transarterial chemoembolization in hepatocellular carcinoma.

作者信息

Yao Lanlin, Adwan Hamzah, Bernatz Simon, Li Hao, Vogl Thomas J

机构信息

Clinic for Radiology and Nuclear Medicine, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.

出版信息

Radiol Med. 2025 Jul 24. doi: 10.1007/s11547-025-02043-6.

Abstract

PURPOSE

Contrast-enhanced magnetic resonance imaging (CE-MRI) monitoring across multiple time points is critical for optimizing hepatocellular carcinoma (HCC) prognosis during transarterial chemoembolization (TACE) treatment. The aim of this retrospective study is to develop and validate an artificial intelligence (AI)-powered models utilizing multi-time-point arterial phase CE-MRI data for HCC prognosis stratification in TACE patients.

MATERIAL AND METHODS

A total of 543 individual arterial phase CE-MRI scans from 181 HCC patients were retrospectively collected in this study. All patients underwent TACE and longitudinal arterial phase CE-MRI assessments at three time points: prior to treatment, and following the first and second TACE sessions. Among them, 110 patients received TACE monotherapy, while the remaining 71 patients underwent TACE in combination with microwave ablation (MWA). All images were subjected to standardized preprocessing procedures. We developed an end-to-end deep learning model, ProgSwin-UNETR, based on the Swin Transformer architecture, to perform four-class prognosis stratification directly from input imaging data. The model was trained using multi-time-point arterial phase CE-MRI data and evaluated via fourfold cross-validation. Classification performance was assessed using the area under the receiver operating characteristic curve (AUC). For comparative analysis, we benchmarked performance against traditional radiomics-based classifiers and the mRECIST criteria. Prognostic utility was further assessed using Kaplan-Meier (KM) survival curves. Additionally, multivariate Cox proportional hazards regression was performed as a post hoc analysis to evaluate the independent and complementary prognostic value of the model outputs and clinical variables. GradCAM +  + was applied to visualize the imaging regions contributing most to model prediction.

RESULTS

The ProgSwin-UNETR model achieved an accuracy of 0.86 and an AUC of 0.92 (95% CI: 0.90-0.95) for the four-class prognosis stratification task, outperforming radiomic models across all risk groups. Furthermore, KM survival analyses were performed using three different approaches-AI model, radiomics-based classifiers, and mRECIST criteria-to stratify patients by risk. Of the three approaches, only the AI-based ProgSwin-UNETR model achieved statistically significant risk stratification across the entire cohort and in both TACE-alone and TACE + MWA subgroups (p < 0.005). In contrast, the mRECIST and radiomics models did not yield significant survival differences across subgroups (p > 0.05). Multivariate Cox regression analysis further demonstrated that the model was a robust independent prognostic factor (p = 0.01), effectively stratifying patients into four distinct risk groups (Class 0 to Class 3) with Log(HR) values of 0.97, 0.51, -0.53, and -0.92, respectively. Additionally, GradCAM +  + visualizations highlighted critical regional features contributing to prognosis prediction, providing interpretability of the model.

CONCLUSION

ProgSwin-UNETR can well predict the various risk groups of HCC patients undergoing TACE therapy and can further be applied for personalized prediction.

摘要

目的

在经动脉化疗栓塞(TACE)治疗期间,跨多个时间点的对比增强磁共振成像(CE-MRI)监测对于优化肝细胞癌(HCC)预后至关重要。本回顾性研究的目的是开发并验证一种利用多时间点动脉期CE-MRI数据对TACE患者的HCC预后进行分层的人工智能(AI)模型。

材料与方法

本研究回顾性收集了181例HCC患者的543次个体动脉期CE-MRI扫描。所有患者均接受了TACE治疗,并在三个时间点进行了纵向动脉期CE-MRI评估:治疗前、第一次TACE治疗后和第二次TACE治疗后。其中,110例患者接受了TACE单一疗法,其余71例患者接受了TACE联合微波消融(MWA)治疗。所有图像均经过标准化预处理程序。我们基于Swin Transformer架构开发了一个端到端深度学习模型ProgSwin-UNETR,以直接从输入的影像数据进行四类预后分层。该模型使用多时间点动脉期CE-MRI数据进行训练,并通过四重交叉验证进行评估。使用受试者操作特征曲线(AUC)下的面积评估分类性能。为了进行比较分析,我们将性能与传统的基于影像组学的分类器和mRECIST标准进行了对比。使用Kaplan-Meier(KM)生存曲线进一步评估预后效用。此外,进行多变量Cox比例风险回归作为事后分析,以评估模型输出和临床变量的独立和互补预后价值。应用GradCAM ++可视化对模型预测贡献最大的影像区域。

结果

ProgSwin-UNETR模型在四类预后分层任务中实现了0.86的准确率和0.92的AUC(95%CI:0.90-0.95),在所有风险组中均优于影像组学模型。此外,使用三种不同方法(AI模型、基于影像组学的分类器和mRECIST标准)对患者进行风险分层,并进行了KM生存分析。在这三种方法中,只有基于AI的ProgSwin-UNETR模型在整个队列以及单独TACE和TACE+MWA亚组中实现了具有统计学意义的风险分层(p<0.005)。相比之下,mRECIST和影像组学模型在亚组间未产生显著的生存差异(p>0.05)。多变量Cox回归分析进一步表明,该模型是一个强大的独立预后因素(p=0.01),有效地将患者分为四个不同的风险组(0类至3类),Log(HR)值分别为0.97、0.51、-0.53和-0.92。此外,GradCAM ++可视化突出了有助于预后预测的关键区域特征,提供了模型的可解释性。

结论

ProgSwin-UNETR可以很好地预测接受TACE治疗的HCC患者的各种风险组,并可进一步应用于个性化预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验